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Electromagnetic fields carry momentum:
Pem = ε0

∫
(E × B) dτ . But if the centre of energy

of a (localized) system is at rest, its total momentum
must be zero. The compensating term has come
to be called ‘hidden’ momentum: Ph = −Pem. It is
(typically) ordinary mechanical momentum, relativistic
in nature, and is ‘hidden’ only in the sense that it
is not associated with motion of the system as a
whole—only with that of its constituent parts. This
article develops a catalogue of field momenta and
hidden momenta for ideal electric and magnetic
dipoles—both the ‘standard’ variety made from
electric charges and currents and the ‘anomalous’
variety made from hypothetical magnetic monopoles
and their currents—in the presence of electric and
magnetic fields (which themselves may be produced
by ‘standard’ or ‘anomalous’ sources).

This article is part of the theme issue ‘Celebrating
125 years of Oliver Heaviside’s ‘Electromagnetic
Theory”.

1. Electric and magnetic dipoles
In the static case, Maxwell’s equations read

(a) V · E =
(

1
ε0

)
ρ, (c) V × E = 0,

(b) V · B = 0, (d) V × B = μ0J,

⎫⎪⎬
⎪⎭ (1.1)

where ρ is the electric charge density and J is the electric
current density. In a world with magnetic monopoles,
there would also exist electromagnetic fields sourced by
magnetic charges (ρ̃) and their currents (J̃):

(a) V · Ẽ = 0, (c) V × Ẽ = −μ0J̃,

(b) V · B̃ = μ0ρ̃, (d) V × B̃ = 0.

⎫⎬
⎭ (1.2)

(I will use a tilde for these ‘anomalous’ sources
and fields, to distinguish them from the ‘standard’

2018 The Author(s) Published by the Royal Society. All rights reserved.
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variety associated with ordinary electric charge.) It follows (by applying the divergence to
equations (1.1(d)) and (1.2(c)) that the electric and magnetic currents are divergenceless:

V · J = 0, V · J̃ = 0, (1.3)

(the associated charges are locally conserved).
The force on an electric charge (q) moving with velocity v is given by the Lorentz force law:

F = q[E′ + (v × B′)], (1.4)

where E′ = E + Ẽ is the total electric field (standard plus anomalous), and B′ = B + B̃. Likewise,
the force on a magnetic monopole (q̃) is

F = q̃[B′ − ε0μ0(v × E′)]. (1.5)

(The slight asymmetry in all these formulae is an unfortunate artefact of the SI system, and would
not appear in Gaussian units.)

The fields can be expressed in terms of scalar and vector potentials:1

E = −VV, B = V × A,

and Ẽ = −V × Ã, B̃ = −VṼ.

⎫⎬
⎭ (1.6)

Adopting the gauge condition
V · A = 0, V · Ã = 0, (1.7)

Maxwell’s equations become

∇2V = − 1
ε0

ρ, ∇2A = −μ0J,

and ∇2Ṽ = −μ0ρ̃, ∇2Ã = −μ0J̃.

⎫⎪⎬
⎪⎭ (1.8)

For localized charge and current configurations, it follows that

V(r) = 1
4πε0

∫
ρ(r′)

|r − r′| dτ ′, A(r) = μ0

4π

∫
J(r′)

|r − r′| dτ ′, (1.9)

and

Ṽ(r) = μ0

4π

∫
ρ̃(r′)

|r − r′| dτ ′, Ã(r) = μ0

4π

∫
J̃(r′)

|r − r′| dτ ′. (1.10)

The electric dipole moment of an electric charge distribution (ρ) is defined by

p ≡
∫

rρ dτ , (1.11)

where r is the vector from the origin to the volume element dτ . The magnetic dipole moment of
an electric current configuration (J) is

m ≡ 1
2

∫
(r × J) dτ . (1.12)

I shall call these ‘standard’ dipoles, to distinguish them from the hypothetical ‘anomalous’ variety
associated with monopole charges and currents:

m̃ ≡
∫

rρ̃ dτ , (1.13)

and

p̃ ≡ − ε0μ0

2

∫
(r × J̃) dτ . (1.14)

1Many of the equations in §1 are taken from [1] and are recapitulated here in order to make the paper self-contained. However,

I have reversed an unfortunate sign convention in the definition of Ã.
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If (as we shall always assume) the dipoles are neutral,∫
ρ dτ = 0,

∫
ρ̃ dτ = 0, (1.15)

then p and m̃ are independent of the choice of origin. It follows from equation (1.3) that

0 =
∫

ri(V · J) dτ =
∫

ri(∇jJj) dτ =
∫

∇j(riJj) dτ −
∫

(∇jri)Jj dτ

= −
∫

δjiJj dτ = −
∫

Jj dτ (1.16)

(repeated indices are to be summed from 1 to 3; we assume that charge and current distributions
are localized, so all boundary terms coming from integration by parts vanish). Thus,∫

J dτ = 0, (1.17)

and in this case, the standard magnetic dipole moment (m) is independent of origin. By the same
reasoning, ∫

J̃ dτ = 0, (1.18)

and p̃ is independent of origin.
Similarly,

0 =
∫

rirj(∇kJk) dτ = −
∫

[∇k(rirj)]Jk dτ = −
∫

(riδjk + rjδik)Jk dτ

= −
∫

(riJj + rjJi) dτ . (1.19)

On the other hand, from equation (1.12),

εijkmk = 1
2

(εijkεklm)
∫

rlJm dτ = 1
2

(
δilδjm − δimδjl

) ∫
rlJm dτ

= 1
2

∫
(riJj − rjJi) dτ =

∫
riJj dτ . (1.20)

By the same token,

εijkp̃k = −μ0ε0

∫
riJ̃j dτ . (1.21)

In general, the charge and current configurations constituting a physical dipole will be
distributed over some finite region of space. However, we shall from now on confine our attention
to ‘ideal’ dipoles, localized at a single point. More precisely, we are interested in the limiting case,
in which the size of the dipole shrinks to zero.

To compute the potential of such a dipole, we note that

|r − r′| =
√

r2 + r′2 − 2r · r′. (1.22)

For an ideal dipole at the origin, the charge (or current) distribution at r′ vanishes except at r′ → 0,
so (in equations (1.9) and (1.10)) we may safely confine our attention to the region r′ � r, for which
the binomial expansion gives

1
|r − r′| ≈ 1

r

(
1 + r · r′

r2

)
. (1.23)

In the case of a standard electric dipole,

V(r) = 1
4πε0

{
1
r

∫
ρ(r′) dτ ′ + r

r3 ·
∫

r′ρ(r′) dτ ′
}

, (1.24)

or (using equations (1.11) and (1.15)),

V(r) = 1
4πε0

p · r
r3 . (1.25)
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Similarly, the potential of a non-standard magnetic dipole is

Ṽ(r) = μ0

4π

m̃ · r
r3 . (1.26)

For a standard magnetic dipole,

A(r) = μ0

4π

{
1
r

∫
J(r′) dτ ′ + 1

r3

∫
(r · r′)J(r′) dτ ′

}
, (1.27)

or (using equations (1.17) and (1.20))

A(r) = μ0

4π

m × r
r3 . (1.28)

Likewise, for an anomalous electric dipole:

Ã(r) = − 1
4πε0

p̃ × r
r3 . (1.29)

To determine the field of a dipole, we take the gradient or curl of the pertinent potential
(equation (1.6)). This requires some care, however, because the dipole potentials are very singular
at the origin. In general [2, eqn 6],

∇i

( rj

r3

)
= 1

r3

(
δij − 3

rirj

r2

)
+ 4π

3
δijδ

3(r), (1.30)

so for any constant vector a,

∇
(

a · r
r3

)
= 1

r3

(
a − 3

r(a · r)
r2

)
+ 4π

3
aδ3(r) (1.31)

and

∇ ×
(

a × r
r3

)
= − 1

r3

(
a − 3

r(a · r)
r2

)
+ 8π

3
aδ3(r). (1.32)

Using these two identities, we find

E(r) = 1
4πε0

1
r3

(
3

r(r · p)
r2 − p

)
− p

3ε0
δ3(r), (1.33)

B(r) = μ0

4π

1
r3

(
3

r(r · m)
r2 − m

)
+ 2μ0m

3
δ3(r), (1.34)

Ẽ(r) = 1
4πε0

1
r3

(
3

r(r · p̃)
r2 − p̃

)
+ 2p̃

3ε0
δ3(r) (1.35)

and B̃(r) = μ0

4π

1
r3

(
3

r(r · m̃)
r2 − m̃

)
− μ0m̃

3
δ3(r). (1.36)

The delta-function terms are often left out, because one is usually interested in the field at some
remove from the dipole; what remains has the same form in all four cases. This ‘universal’
part holds outside a sphere of vanishingly small radius; the delta-function describes the field
inside this sphere. Although the latter contributes only at one point, it is essential for the internal
consistency of the theory.
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It is useful to note that this entire theory is invariant under the following duality
transformation:

2. Field momentum
The (linear) momentum in electromagnetic fields is

Pem = ε0

∫
(E′ × B′) dτ (2.1)

(the fields could be standard or anomalous, or—in principle—some of each). It is often more
convenient to express this equation in terms of potentials; the resulting formula depends on the
nature of the sources:

1. Standard electric and magnetic fields: E = −VV, so

Pem = −ε0

∫
[(VV) × B] dτ = −ε0

[∫
V × (VB) dτ −

∫
V(V × B) dτ

]

= μ0ε0

∫
V(r)J(r) dτ . (2.2)

On the other hand, since2 (equation (1.9))

V(r) = 1
4πε0

∫
ρ(r′)

|r − r′| dτ ′ and A(r) = μ0

4π

∫
J(r′)

|r − r′| dτ ′,

Pem = μ0ε0
1

4πε0

∫∫
ρ(r′)J(r)
|r − r′| dτ ′ dτ =

∫ {
μ0

4π

∫
J(r)

|r′ − r| dτ

}
ρ(r′) dτ ′

=
∫

ρ(r)A(r) dτ . (2.3)

2. Standard electric field and anomalous magnetic field: The first line of equation (2.2) still holds,
but since V × B̃ = 0, the field momentum is zero:

Pem = 0. (2.4)

2Of course, you could go back to equation (2.1) and insert B = ∇ × A, but it’s a little easier to work from equation (2.2).
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3. Anomalous electric and magnetic fields:

Pem = ε0

∫
(Ẽ × B̃) dτ = −ε0

∫
(Ẽ × VṼ) dτ = −ε0

∫
Ṽ(V × Ẽ) dτ

= μ0ε0

∫
Ṽ(r)J̃(r) dτ , (2.5)

and since (equation (1.10))

Ṽ(r) = μ0

4π

∫
ρ̃(r′)

|r − r′| dτ ′ and Ã(r) = μ0

4π

∫
J̃(r′)

|r − r′| dτ ′,

and hence Pem = μ0ε0

∫
ρ̃(r)Ã(r) dτ .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.6)

4. Anomalous electric field and standard magnetic field:

Pem = ε0

∫
Ẽ × (V × A) dτ

= −ε0

∫ [
A × (V × Ẽ) + (A · V)Ẽ + (Ẽ · V)A

]
dτ

= μ0ε0

∫
(A × J̃) dτ . (2.7)

I used the fact that the ith component of
∫

(A · V)Ẽ dτ is

∫
A · V(Ẽi) dτ = −

∫
(V · A)Ẽi dτ = 0, (2.8)

and the same goes for
∫

(Ẽ · V)A dτ . Finally, using the now-familiar trick,

Pem = μ0ε0

∫
(A × J̃) dτ = μ0ε0

∫∫
μ0

4π

J(r’) × J̃(r)
|r − r′| dτ ′ dτ

= μ0ε0

∫
(J × Ã) dτ . (2.9)

I summarize these results as follows:

Now we will use these formulae to determine the field momenta of electric and magnetic
dipoles (both standard and anomalous) in external electric and magnetic fields (both standard
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and anomalous). The dipoles are at rest (we might as well put them at the origin), and since they
occupy an infinitesimal volume we can expand the external potentials:

V(r) = V(0) + r · (V0V) = V(0) − r · E(0); A(r) = A(0) + (r · V0)A; (2.10)

and

Ṽ(r) = Ṽ(0) + r · (V0Ṽ) = Ṽ(0) − r · B̃(0); Ã(r) = Ã(0) + (r · V0)Ã. (2.11)

(Here V0 means ‘evaluate the derivatives at r = 0,’ and we do not need any higher-order terms.)

1. Standard electric dipole in standard magnetic field. Use equation (2.3):

Pem =
∫

ρ(r)[A(0) + (r · V0)A] dτ

=
{∫

ρ(r) dτ

}
A(0) +

({∫
rρ(r) dτ

}
· V0

)
A

= (p · V)A. (2.12)

(I dropped the subscript on V; it is to be evaluated at the location of the dipole.)
2. Standard magnetic dipole in standard electric field. Use equation (2.2):

Pem = μ0ε0

{
V(0)

∫
J(r) dτ − Ej(0)

∫
rjJ dτ

}
. (2.13)

But
∫

J dτ = 0 and
∫

riJj dτ = εijkmk, so the jth component is

Pemj = −μ0ε0Ei(0)
∫

riJj dτ = −μ0ε0Ei(0)εijkmk. (2.14)

(I used equation (1.20)) and therefore

Pem = μ0ε0(E × m). (2.15)

3. Standard electric dipole in anomalous magnetic field, or anomalous magnetic dipole in standard
electric field. Equation (2.4) says

Pem = 0. (2.16)

4. Anomalous electric dipole in anomalous magnetic field. Use equation (2.5):

Pem = μ0ε0

∫
[Ṽ(0) − r · B̃(0)]J̃ dτ .

Pemi = −μ0ε0B̃j(0)
∫

rjJ̃i dτ = −μ0ε0B̃j(0)
(

− 1
μ0ε0

)
εjikp̃k

= −εijkB̃j(0)p̃k,

so Pem = −B̃ × p̃.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.17)

5. Anomalous magnetic dipole in anomalous electric field. Use equation (2.6):

Pem = μ0ε0

∫
[Ã(0) + (r · V0)Ã]ρ̃(r) dτ .

Pemi = μ0ε0(∇0jÃi)
∫

rjρ̃(r) dτ = μ0ε0(∇0jÃi)m̃j

so Pem = μ0ε0(m̃ · V)Ã.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.18)
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6. Anomalous electric dipole in standard magnetic field. Use equation (2.7):

Pem = μ0ε0

∫
[A(0) + (r · V0)A] × J̃(r) dτ .

Pemi = μ0ε0εijk(∇0lAj)
∫

rlJ̃k dτ = μ0ε0εijk(∇0lAj)
(

− 1
μ0ε0

)
εlkmp̃m

= −(δimδjl − δilδjm)(∇0lAj)p̃m = −(∇0 · A)p̃i + (∇0iAj)p̃j,

so Pem = p̃jVAj = V(p̃ · A) = p̃ × (V × A) + (p̃ · V)A

= (p̃ × B) + (p̃ · V)A.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.19)

(The form V(p̃ · A) is tidy but dangerous: the derivative does not act on p̃, only on A.)
7. Standard magnetic dipole in anomalous electric field. Use equation (2.9):

Pem = −μ0ε0

∫
[Ã(0) + (r · V0)Ã] × J(r) dτ .

Pemi = −μ0ε0εijk(∇0lÃj)
∫

rlJk dτ = −μ0ε0εijk(∇0lÃj)εlkmmm

= −μ0ε0(δimδjl − δilδjm)(∇0lÃj)mm = μ0ε0(∇0iÃj)m̃j

so Pem = μ0ε0mjVÃj = μ0ε0V(m · Ã) = μ0ε0[m × (V × Ã) + (m · V)Ã]

= μ0ε0[−m × Ẽ + (m · V)Ã].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.20)

I summarize the results as follows:

3. Hidden momentum
Now, there is a general theorem [3,4] in special relativity that says ‘if the centre of energy of a
localized system is at rest, then the total momentum is zero.’ In the cases, we are considering
(stationary dipoles in static fields) the centre of energy is certainly not moving, and yet the field
momentum is not zero, as we have seen. Evidently, there must be some other momentum, equal
and opposite to Pem. This other momentum has come to be called ‘hidden’ momentum [5,6],3

though there is nothing secret about it—in the present context, it is perfectly ordinary mechanical
momentum, relativistic in nature, and ‘hidden’ only in the sense that it is not associated with
motion of the object (here, the dipole) as a whole, but rather with its internally moving parts.

The most illuminating example of hidden momentum goes back to Penfield & Haus in the
mid-1960s [8]. Imagine a rectangular loop of wire, carrying a steady current I in the presence of a
uniform electrostatic field E (figure 1). Picture the current as a resistanceless flow of free positive

3For a history, and comprehensive references, see [7].
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t

EI

l

I

I

I

b

w

Figure 1. The Penfield–Haus model.

charges,4 each with charge q and mass m. The electric field accelerates them as they ascend the
left side, and slows them down as they descend the right side. Accordingly, their speed is greater
along the top segment than at the bottom: vt > vb. On the other hand, they are further apart in the
top segment, so there are more of them at the bottom: Nb > Nt. The current (which, remember, is
constant around the loop) is

I = Ntq
l

vt = Nbq
l

vb ⇒ Ntvt = Nbvb = Il
q

. (3.1)

The net (relativistic) momentum of the charges—to the right—is

Ph = γtNtmvt − γbNbmvb = Ilm
q

(γt − γb). (3.2)

Now, the kinetic energy gained in ascending the left leg is equal to the work done by the electric
force:

γtmc2 − γbmc2 = qEw ⇒ γt − γb = qEw
mc2 , (3.3)

so

Ph =
(

Ilm
q

)(
qEw
mc2

)
= 1

c2 (Ilw)E. (3.4)

But Ilw is the magnetic dipole moment of the loop; it points into the page. So

Ph = 1
c2 (m × E) [m in E]. (3.5)

This is the hidden momentum of the configuration—it is nothing but the net mechanical
momentum of the charges constituting the current. It is independent of the size of the dipole
(as long as E is constant over its area), so it applies in particular to an ideal (point) dipole. And it
is just right to cancel the field momentum (equation (2.15))

Pem = −μ0ε0(m × E),

as required by the centre of energy theorem.
Notice that the Penfield–Haus mechanism applies to particles in motion. If, for example, this

were an anomalous magnetic dipole, made from monopoles at rest, there would be no hidden
momentum (in a standard electric field):

Ph = 0 [m̃ in E]. (3.6)

But, in that case, there is no field momentum either (equation (2.16)), and the total is again zero.

4This is not, of course, a realistic model of an actual current-carrying wire, but it makes the essential point with a minimum
of extraneous baggage. For other models, see [9,10].
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What if E is not uniform over the current loop? Consider a segment dl; its momentum is

dP = γ (λm dl)v = γ
λm

λe
λev dl = γ (αI) dl, (3.7)

where λm is the mass (of the moving charges) per unit length, λe is their charge per unit length
and α is the mass-to-charge ratio). For the whole loop, then,

Ph = αI
∮

γ dl. (3.8)

Picking as the reference point for potential some convenient spot O on the loop,

γ (r) = γ0 +
∫ r

O
dW
mc2 = γ0 + q

mc2

∫ r

O
E · dl = γ0 − 1

αc2 V(r), (3.9)

where γ0 is the value at O, and dW is the work done on a charge as it advances by dl along the
loop. But ∮

γ0 dl = γ0

∮
dl = 0, (3.10)

and hence5

Ph = − I
c2

∮
V(r) dl. (3.11)

For example, if the source of the electric field is an ordinary electric dipole, p, (I’m changing
the reference point, but the closed line integral is independent of any added constant)

Ph = − I
c2

1
4πε0

∮
[p · (r − r′)]

|r − r′|3 dl = − μ0

4π

∮
I

[p · (r − r′)]
|r − r′|3 dl, (3.12)

where (r − r′) is the vector from the dipole (at r′) to the point r. (It does not matter whether you
associate the vector with I or with dl, since they are in the same direction: I dl = I dl.) We can
express this result in terms of the vector potential (due to the current loop) at the location of the
electric dipole:

A(r′) = μ0

4π

∮
I(r)

|r′ − r| dl. (3.13)

Thus

[(p · V′)A(r′)]i = μ0

4π

∮
Iipj∇′

j

(
1

|r′ − r|
)

dl = − μ0

4π

∮
Iipj

(r′ − r)j

|r′ − r|3 dl, (3.14)

or

[(p · V′)A(r′)] = − μ0

4π

∮
I

[p · (r′ − r)]
|r′ − r|3 dl. (3.15)

So the hidden momentum is

Ph = −(p · V)A, [p in B], (3.16)

which once again is just right to cancel the field momentum (equation (2.12)).
The same argument applies to an anomalous magnetic dipole in an anomalous

electric field, except that what does the work is now the magnetic force (F = q̃B̃) acting

5For volume currents equation (3.11) becomes Ph = −(I/c2)
∫

VJ dτ , and we see immediately that it cancels the field
momentum (equation (2.2)). If E is uniform over the current region, then V(r) = V(0) − E · r, and (using equation (1.20))
Phj = μ0ε0Ei

∫
riJj dτ = μ0ε0Eiεijkmk = μ0ε0(m × E)j, so we recover equation (3.5).
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on the particles in the monopole current loop:

Ph = − 1
c2 (m̃ · V)Ã [m̃ in Ẽ]. (3.17)

Alternatively, you can get equation (3.17) by applying the duality transformation to equation
(3.16). Likewise, from equations (3.5) and (3.6),

Ph = −(p̃ × B̃) [p̃ in B̃], (3.18)

and
Ph = 0 [p in B̃]. (3.19)

The original Penfield–Haus model made no reference to the source of the electrostatic field—
they presumably took it to be some collection of stationary electric charges (perhaps in the
form of a surrounding parallel-plate capacitor). The hidden momentum in the magnetic dipole
itself would be the same (equation (3.5)) if the electric field were due to a current of magnetic
monopoles ((1/c2)(m × Ẽ)). However, in that case there would also be hidden momentum residing
in the monopole current (the monopoles accelerating and decelerating in response to the magnetic
field of the electric current loop). The latter is given by equation (3.17) (for the momentum in the
monopole current loop it does not matter whether the source of the magnetic field is standard or
anomalous). Combining the two we get

Ph = 1
c2 [(m × Ẽ) − (m · V)Ã] (m in Ẽ). (3.20)

By the same argument (or by invoking the duality transformation)

Ph = −[(p̃ × B) + (p̃ · V)A] (p̃ in B). (3.21)

The following catalogue summarizes these results:
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In each case, the hidden momentum is just right to cancel the field momentum.

4. Interacting dipoles
As an application, suppose that the field is itself due to another dipole. There are four possibilities:
(1) p and m, (2) p and m̃, (3) p̃ and m and (4) p̃ and m̃. We could regard the first as a standard
magnetic dipole in the electric field of a standard electric dipole:

Ph = 1
c2 (m × E) = μ0ε0m ×

{
1

4πε0

[3(p · r̂)r̂ − p]
r3 − 1

3ε0
pδ3(r)

}

= μ0

4πr3 [3(p · r̂)(m × r̂) − (m × p)] − μ0

3
(m × p) δ3(r), (4.1)

(where r is the vector from one dipole to the other), or as a standard electric dipole in the magnetic
field of a standard magnetic dipole:

Ph = −(p · V)A = −(p · V)
μ0

4π

(m × r)
r3 ,

or Phi = − μ0

4π
εijkplmj∇l

(
rk

r3

)
= − μ0

4π
εijkplmj

[
1
r3

(
δlk − 3

rlrk

r2

)
+ 4π

3
δlk δ3(r)

]

= − μ0

4π

{
[−3(p · r̂)(m × r̂)i + (m × p)i]

r3 + 4π

3
(m × p)iδ

3(r)
}

,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

and we recover equation (4.1).
In the same way, we obtain the hidden momentum in the other three cases. These results are

summarized below:

5. Spherical shell models
In this paper, I have treated ideal (point) dipoles, whose fields include the subtle delta function
terms. It is embarrassingly easy to get these ‘contact’ contributions wrong, and wise to check
one’s results using a finite model. What if we picture the dipoles as spherical shells, of radius R,
carrying appropriate surface charges (σ ) or currents (K)?6 Letting v ≡ 4

3 πR3 be the volume of the
sphere:

6If you prefer, think of them as uniformly polarized or uniformly magnetized solid spheres, but this raises diverting questions
about the correct formula for the field momentum inside a material medium (Abraham versus Minkowski), which I would
like to avoid.
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1. Standard electric dipole, p: σ = (p · r̂)/v,

V(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4πε0

(p · r̂)
r2 , (r > R),

(p · r)
3ε0v

, (r < R)

(5.1)

and therefore

E(r) =

⎧⎪⎪⎨
⎪⎪⎩

1
4πε0

[3(p · r̂)r̂ − p]
r3 , (r > R),

− p
3ε0v

, (r < R).
(5.2)

2. Standard magnetic dipole, m: K = (m × r̂)/v,

A(r) =

⎧⎪⎪⎨
⎪⎪⎩

μ0

4π

(m × r̂)
r2 , (r > R),

μ0(m × r)
3v

, (r < R)

(5.3)

and therefore

B(r) =

⎧⎪⎪⎨
⎪⎪⎩

μ0

4π

[3(m · r̂)r̂ − m]
r3 , (r > R),

2μ0m
3v

, (r < R).

(5.4)

3. Anomalous magnetic dipole, m̃: σ̃ = (m̃ · r̂)/v,

Ṽ(r) =

⎧⎪⎪⎨
⎪⎪⎩

μ0

4π

(m̃ · r̂)
r2 , (r > R),

μ0(m̃ · r)
3v

, (r < R)

(5.5)

and therefore

B̃(r) =

⎧⎪⎪⎨
⎪⎪⎩

μ0

4π

[3(m̃ · r̂)r̂ − m̃]
r3 , (r > R),

−μ0m̃
3v

, (r < R).

(5.6)

4. Anomalous electric dipole, p̃: K̃ = −c2[(p̃ × r̂)/v],

Ã(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
4πε0

(p̃ × r̂)
r2 , (r > R),

− (p̃ × r)
3ε0v

, (r < R)

(5.7)

and therefore

Ẽ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4πε0

[3(p̃ · r̂)r̂ − p̃]
r3 , (r > R),

2p̃
3ε0v

, (r < R).

(5.8)

As R → 0, 1/v → δ3(r), and we recover the ideal dipole fields (equations (1.33)–(1.36)).
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Now suppose the sphere is both an electric dipole (either kind) and a magnetic dipole (either
type).7 Let us first calculate the field momentum for each combination. The external contribution
(r > R) is the same for all of them; letting a ≡ (p × m):

Pout
em = ε0

1
4πε0

μ0

4π

∫
[3(p · r̂)r̂ − p] × [3(m · r̂)r̂ − m]

r6 dτ

= μ0

(4π )2

∫
[3(a · r̂)r̂ − 2a]

r6 dτ . (5.9)

Setting the z axis along a, so that a = aẑ, a · r̂ = a cos θ and r̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θ ẑ,
the φ integral kills the x̂ and ŷ components, leaving

Pout
em = μ0

(4π )2 (aẑ)(2π )
∫∞

R

1
r4 dr

∫π

0
(3 cos2 θ − 2) sin θ dθ (5.10)

= − μ0

4π

(p × m)
3R3 . (5.11)

The internal contribution (r < R) is trivial (since the fields are uniform), but different for the (four)
different configurations:

1. p and m: Pin
em = ε0(−p/3ε0v) × (2μ0m/3v)v = −2μ0(p × m)/9v.

So Pem = − μ0

4π

(p × m)
R3 . (5.12)

2. p and m̃: Pin
em = ε0(−p/3ε0v) × (−μ0m̃/3v)v = (μ0/9v)(p × m̃).

So Pem = 0. (5.13)

3. p̃ and m: Pin
em = ε0(2p̃/3ε0v) × (2μ0m/3v)v = 4μ0(p̃ × m)/9v.

So Pem = μ0

4π

(p̃ × m)
R3 . (5.14)

4. p̃ and m̃: Pin
em = ε0(2p̃/3ε0v) × (−μ0m̃/3v)v = −(2μ0/9v)(p̃ × m̃).

So Pem = − μ0

4π

(p̃ × m̃)
R3 . (5.15)

Now let’s calculate the hidden momentum in each configuration:

1. p and m: I would like to use the Penfield–Haus formula (equation (3.5)), but that assumes
the electric field is uniform over the current region. In this case, the field is uniform inside
the sphere, but right at the surface (where the current is located) E is discontinuous,
and the external field is not uniform. You can finesse this problem by a trick: make the
magnetic sphere ever-so-slightly smaller than the electric sphere; then the electric field
really is uniform over the current, and we get8

Ph = 1
c2 (m × E) = μ0ε0

[
m ×

( −p
3ε0v

)]
= μ0

4π

(p × m)
R3 . (5.16)

2. p̃ and m̃: using the duality transformation and equation (5.19)

Ph = μ0

4π

(p̃ × m̃)
R3 . (5.17)

3. p and m̃: nothing is moving, so
Ph = 0. (5.18)

7The ‘standard’ case (p and m) was introduced by Romer [11].

8If this bothers you, go back to equation (3.11) (or rather, its analogue for surface currents), Ph = −(1/c2)
∫

VK da; you get the
same answer either way.
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4. p̃ and m: In this case, there is a hidden momentum in both spheres. Using the trick
(making the magnetic sphere slightly smaller than the electric sphere—you can do it the
other way, of course, but you get the same answer), the hidden momentum in the electric
current is

Pe
h = 1

c2 (m × Ẽ) = μ0ε0

[
m ×

(
2p̃

3ε0v

)]
= −2

μ0

4π

(p̃ × m)
R3 . (5.19)

But the magnetic field in the vicinity of the monopole current is not uniform, and we
must use equation (3.8) (or rather, its analogue for a monopole current (Ĩ) in a standard
magnetic field B):

P = α̃Ĩ
∮

γ dl. (5.20)

In this case, equation (3.9) becomes

γ (r) = γ0 + 1
α̃c2

∫ r

O
B · dl. (5.21)

We might as well choose our axes so that p̃ points in the z direction. I will first calculate
the hidden momentum in a single ring of monopole current, Ĩ, at z = R cos θ , with radius
R sin θ .

B = μ0

4π

[3(m · r̂)r̂ − m]
R3 , dl = R sin θ dφφ̂, (5.22)

and (setting the reference point directly above the x axis),
∫ r

O
B · dl = μ0

4π

R sin θ

R3

∫φ

0
[3(m · r̂)r̂ − m] · φ̂ dφ = −μ0 sin θ

4πR2

∫φ

0
(m · φ̂) dφ.

Now
φ̂ = − sin φx̂ + cos φŷ, so m · φ̂ = −mx sin φ + my cos φ,

and therefore ∫ r

O
B · dl = −μ0 sin θ

4πR2

∫φ

0
(−mx sin φ + my cos φ) dφ

= −μ0 sin θ

4πR2

[
mx(cos φ − 1) + my sin φ

]
. (5.23)

The hidden momentum in this ring is

Pring
h = Ĩ

c2

(
−μ0 sin θ

4πR2

) ∮ [
mx(cos φ − 1) + my sin φ

]
R sin θ dφφ̂

= − Ĩμ0 sin2 θ

4πc2R

∫ 2π

0

[
mx(cos φ − 1) + my sin φ

]
(− sin φx̂ + cos φŷ) dφ

= − Ĩμ0 sin2 θ

4πc2R

(−πmyx̂ + πmxŷ
)

. (5.24)

Now we integrate over all the rings that cover the monopole current sphere, using Ĩ →
−|K̃|R dθ and K̃ = −c2(p̃ × r̂)/v

Pm
h = μ0

4c2 (−myx̂ + mxŷ)
∫π

0
sin2 θ

c2|p̃ × r̂|
v

dθ

= μ0

4v

(−myx̂ + mxŷ
)

p̃
∫π

0
sin3 θ dθ = μ0

4v

(−myx̂ + mxŷ
)

p̃
(

4
3

)

= μ0

3v
(p̃ × m) = μ0

4π

(p̃ × m)
R3 . (5.25)

Finally, combining equations (5.19) and (5.25),

Ph = Pe
h + Pm

h = − μ0

4π

(p̃ × m)
R3 . (5.26)
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These results confirm the contact terms in the table in §4.9 As always, the hidden momentum
is equal and opposite to the field momentum. There is nothing surprising in any of this, but it is
gratifying to see it work out in explicit detail.
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