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I. INTRODUCTION

According to classical electrodynamics, electric and mag-
netic fields (E and B) store linear momentum, which must
be included if the total momentum of a system is to be con-
served. Specifically, the electromagnetic momentum per unit
volume is

g ¼ !0ðE# BÞ; (1)

as first proposed by Poynting (Refs. 30–32). Field momen-
tum is most dramatically demonstrated in the laboratory by
the pressure of light on an absorbing or reflecting surface. [In
1619 Kepler suggested that the pressure of light explains
why comet tails point away from the sun (Ref. 29). The
theory was developed by Maxwell (Ref. 10) and confirmed
experimentally by Lebedew (Ref. 25) and Nichols and Hull
(Ref. 28). Some introductory textbooks offer a quick qualita-
tive explanation for the pressure exerted on a perfect conduc-
tor: E drives charge in (say) the x direction and B (in the y
direction) then exerts a force in the z direction. This naive
argument is faulty (Refs. 27, 33, and 16).]

But the notion that fields carry momentum leads to several
intriguing problems, some of which are not entirely resolved
after more than a century of debate.

(1) For a point charge q in an external field represented by
the vector potential A, the electromagnetic momentum is
qA. This suggests that A can be thought of as “potential
momentum per unit charge,” just as the scalar potential
V is “potential energy per unit charge.” But this interpre-
tation raises questions of its own, and it has never been
universally accepted.

(2) According to Eq. (1), even purely static fields can
store momentum. How can a system at rest carry mo-
mentum? It cannot … there must be some compensat-
ing non-electromagnetic momentum in such systems.

But locating this “hidden momentum” can be subtle
and difficult.

(3) A moving charge drags around the momentum in its
fields, which means (in effect) that it has “extra” mass.
But this “electromagnetic mass” is inconsistent with what
you get from the energy in the fields (using Einstein’s for-
mula E¼mc2)—by a notorious factor of 4/3, in the case
of a spherical shell. Which mass (if either) is “correct”?

(4) Inside matter, which is subject to polarization and mag-
netization, the effective field momentum is modified.
Minkowski proposed

gM ¼ ðD# BÞ; (2)

Abraham advocated

gA ¼
1

c2
ðE#HÞ: (3)

For over a century a debate has raged: which expression is
right? Or are they perhaps both right, and simply describe
different things? How can the question be settled, theoreti-
cally and experimentally? Although many distinguished
authors claim to have resolved the issue, the dispute contin-
ues to this day.

In Section II, I summarize the theory. I then survey each
of the four controversies described qualitatively above. In
the final section, I briefly consider electromagnetic momen-
tum in quantum mechanics, where the photon makes the
story in some respects more concrete and intuitive.

II. THEORY

A. Nonrelativistic

Electrodynamics (Refs. 2 and 6) is based on Maxwell’s
equations, which tell us how the sources (charge density q
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and current density J) generate electric and magnetic fields
(E and B):

r % E ¼ 1

!0
q; r# E ¼ & @B

@t
;

r % B ¼ 0; r# B ¼ l0Jþ l0!0
@E

@t
; (4)

and the Lorentz force law, which tells us the force exerted by
the fields on a point charge q moving with velocity v:

F ¼ qðEþ v# BÞ: (5)

The homogeneous Maxwell equations (the two that do not
involve q or J) allow us to express the fields in terms of sca-
lar and vector potentials

E ¼ &rV & @A

@t
; B ¼ r# A: (6)

Electromagnetic fields store energy and momentum (and
for that matter also angular momentum). The energy per unit
volume in the fields is

u ¼ 1

2
!0E2 þ 1

l0

B2

! "
; (7)

and the momentum density is

g ¼ !0ðE# BÞ: (8)

The fields also transport energy and momentum from one
place to another. The energy flux (energy per unit time, per
unit area) is given by the Poynting vector,

S ¼ 1

l0

ðE# BÞ (9)

(S % da is the energy per unit time transported through a
“window” of area da). The momentum flux is related to the
Maxwell stress tensor:

Tij ¼ !0 EiEj &
1

2
dijE

2

! "
þ 1

l0

BiBj &
1

2
dijB

2

! "
(10)

(Specifically, the momentum per unit time transported
through a window da is &>

$
% da ). For example, the energy

and momentum per unit time radiated (to infinity) by a non-
relativistic point charge q are

dE

dt
¼ l0q2

6pc
a2; (11)

dp

dt
¼ l0q2

6pc3
a2v; (12)

where v is the velocity of the charge and a is its acceleration.
[The uniqueness of these expressions [Eqs. (7)–(10)] is open
to some question (Ref. 23), but I shall take them as
definitions.]

Several conservation laws follow from Maxwell’s equa-
tions. Local conservation of charge is expressed by the conti-
nuity equation,

@q
@t
þr % J ¼ 0: (13)

The corresponding statement for electromagnetic energy is

@u

@t
þr % S ¼ &ðE % JÞ: (14)

This is Poynting’s theorem; E % J is the power per unit vol-
ume delivered by the fields to the electric charges. Except in
regions where E % J¼ 0 (empty space, for example) the elec-
tromagnetic energy by itself is not conserved, because the
fields do work on the charges. Similarly,

@g

@t
&r % >

$
¼ &ðqEþ J# BÞ: (15)

Here (qEþ J#B) is the force per unit volume exerted by
the fields on the electric charges. Except (for example) in
empty space, electromagnetic momentum by itself is not
conserved. [Nor, therefore, is mechanical momentum sepa-
rately conserved. This means that Newton’s Third Law
(although it holds in electrostatics and magnetostatics) is not
obeyed in electrodynamics (Refs. 22 and 2).]

As we shall see, it is no accident that the same quantity
(E#B) appears in the Poynting vector and in the momentum
density (Ref. 1),

S ¼ c2g (16)

(or that the same quantity >
$

plays a dual role as force-per-
unit-area and momentum flux).

B. Relativistic

1. Notation

The theory is more elegant in covariant (relativistic) nota-
tion. The (Cartesian) space-time coordinates are xl¼ (ct, x,
y, z), Greek indices run from 0—the “temporal” coordi-
nate—to 3, while Roman indices go from 1 to 3—the
“spatial” coordinates. We use the metric

gl" ¼

1 0 0 0
0 &1 0 0
0 0 &1 0
0 0 0 &1

0

BB@

1

CCA (17)

and the Einstein convention (sum repeated indices). The
energy density u, the energy flux S, the momentum density

g, and the stress tensor >
$

go together to make the stress-
energy tensor:

Hl" ¼
u ½S=c)
½cg) ½&>

$
)

! "
(18)

This is entirely general—in other contexts u, S, g, and >
$

will
not have their electromagnetic form [Eqs. (7)–(10)]. If the
stress-energy tensor is divergenceless:

@lHl" ¼ 0 (19)

then

pl *
ð

H0l d3r (20)

transforms as a four-vector [this is sometimes called “von
Laue’s theorem” (Refs. 24, 26, and 7)], and the total energy
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and momentum (E¼ cp0 and p) are conserved. If the stress
tensor is symmetric (H"l¼Hl"), then angular momentum is
also conserved (Ref. 11). In a well-formulated theory the
complete stress-energy tensor is always divergenceless and
symmetric, but this may not be true for individual portions
of it, such as the electromagnetic contribution alone.

2. Electrodynamics

The charge and current densities combine to form a four-
vector:

Jl ¼ ðcq; Jx; Jy; JzÞ; (21)

the fields constitute an antisymmetric tensor:

Fl" ¼

0 &Ex &Ey &Ez

Ex 0 &cBz cBy

Ey cBz 0 &cBx

Ez &cBy cBx 0

0

BB@

1

CCA; (22)

and the potentials make a four-vector

Al ¼ ðV=c;Ax;Ay;AzÞ: (23)

The inhomogeneous Maxwell equations read

@l Fl" ¼ 1

!0c
J" (24)

(where @l is short for @/@xl). The homogeneous Maxwell
equations are enforced by the potential representation

Fl" ¼ @lA" & @"Al: (25)

The electromagnetic stress-energy tensor is:

Tl" ¼

u Sx=c Sy=c Sz=c
cgx &Txx &Txy &Txz

cgy &Tyx &Tyy &Tyz

cgz &Tzx &Tzy &Tzz

0

BB@

1

CCA: (26)

In view of Eq. (16), Tl" is symmetric; in terms of the fields:

Tl" ¼ !0 gljFjkFk" þ 1

4
gl"FjkFjk

! "
: (27)

The continuity equation becomes the statement that Jl is
divergenceless:

@l Jl ¼ 0: (28)

The electromagnetic stress-energy tensor is not by itself
divergenceless; from Maxwell’s equations it follows that

@lTl" ¼ 1

c
Fj"Jj: (29)

Ordinarily, therefore, electromagnetic energy and
momentum

p0
em ¼

ð
T00 d3r and pi

em ¼
ð

T0i d3r; (30)

do not constitute a four-vector, and they are not conserved.
However, if Jj¼ 0 (for instance, in empty space) then pl

em is

a conserved four-vector. And (as always) the complete
stress-energy tensor,

Hl" ¼ Tl" þHl"
o ; (31)

(where Hl"
o is the non-electromagnetic contribution) is diver-

genceless (and symmetric).
The energy/momentum radiated by a point charge q is

dpl

dt
¼ l0q2

6pc3
ða"a"Þgl; (32)

where gl : dxl/ds is the four-velocity and al : dgl/ds is
the four-acceleration (ds is the proper time).

III. MOMENTUM AND VECTOR POTENTIAL

For a localized configuration the total momentum in the
fields is

p ¼
ð

g d3r ¼ !0

ð
ðE# BÞ d3r: (33)

[I assume all fields go to zero sufficiently rapidly at infinity
that the integrals converge, and surface terms can be
neglected. It is notoriously dangerous to speak of the mo-
mentum (or energy) of a configuration that is not localized in
space, and when I refer to a “uniform” field this should
always be interpreted to mean locally uniform, but going to
zero at infinity.] In the static case two equivalent expressions
can be obtained, by writing either E or B in terms of the
potentials (E ¼ &rV, or B ¼ r# A with r % A ¼ 0) (Refs.
51, 47, 38, and 61):

p ¼
ð

qA d3r; (34)

p ¼ 1

c2

ð
VJ d3r: (35)

In particular, the electromagnetic momentum of a stationary
point charge q, in a magnetic field represented by the vector
potential A, is

p ¼ qA: (36)

This suggests that A can be interpreted as “potential
momentum” per unit charge, just as V is potential energy per
unit charge.

The association between momentum and vector potential
goes back to Maxwell, who called A “electromagnetic
momentum” (Ref. 41; p. 481) and later “electrokinetic
momentum” (Ref. 10; Art. 590), and Thomson (Ref. 21). But
the idea did not catch on; any physical interpretation of A
was disparaged by Heaviside and Hertz (Refs. 34 and 36),
who regarded A as a purely mathematical device. So genera-
tions of teachers were left with no good answer to their stu-
dents’ persistent question: “What does the vector potential
represent, physically?” Few were satisfied by the safe but
unilluminating response, “It is that function whose curl is B”
(Ref. 39). From time to time the connection to momentum
was rediscovered [by Calkin (Ref. 35), for example], but it
was not widely recognized until Konopinski’s pivotal paper
(Ref. 40). Konopinski was apparently unaware of the histori-
cal background, which was supplied by Gingras (Ref. 37).
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Many modern authors follow Konopinski’s lead, culminating
in what remains (to my mind) the definitive discussion by
Semon and Taylor (Ref. 42).

An obvious objection is that the vector potential is not
gauge invariant, and different choices yield different
momenta. Semon and Taylor point out that generalized mo-
mentum itself is ambiguous: canonical momentum, for
instance, does not always coincide with ordinary (“kinetic”)
momentum. In any event, Eq. (34) holds only for static
fields. But in truth, the same objections could be raised
against the interpretation of V as potential energy per unit
charge. [A point charge at rest can be represented by the
potentials V (r, t)¼ 0, Aðr; tÞ ¼ &ð1=4p!0Þqt=r2 r̂, and while
no physicist in her right mind would choose to do so, the fact
remains that the physical meaning of V depends on the
gauge. Moreover, if the fields are time dependent, the work
done to move a charge is no longer qDV in any gauge.]

Another way to get at the association between momentum
and potential is afforded by the Lagrangian formulation of
electrodynamics. For a nonrelativistic particle of mass m and
charge q, moving with velocity v through fields described by
the potentials V (r, t) and A(r, t) (Ref. 5; Sec. 4.9)

Lðr; v; tÞ ¼ 1

2
mv2 þ qv % A& qV: (37)

The generalized momentum ðpi ¼ dL=d _qiÞ (Ref. 20) is

p ¼ mvþ qA; (38)

the sum of a purely kinetic part (mv) and an electromagnetic
part (qA). The Hamiltonian p % v& Lð Þ is

H ¼ 1

2m
p& qAð Þ2 þ qV: (39)

It differs from the free particle Hamiltonian (H¼ p2/2m) by
the substitution

p! p& qA; H ! H & qV: (40)

This is the so-called “minimal coupling” rule—an efficient
device for constructing the Hamiltonian of a charged particle
in the presence of electromagnetic fields. It is equivalent to
the Lorentz force law and is especially useful in quantum
mechanics (Ref. 14, Sec. 6.8). In the relativistic theory (Ref.
6, Sec. 12.1) the generalized four-momentum is

pl ¼ mgl þ qAl; (41)

and minimal coupling becomes (Ref. 3; p. 360)

pl ! pl & qAl: (42)

Thus, relativity reinforces the notion that if V is (potential)
energy per unit charge, then A is (potential) momentum per
unit charge, drawing a parallel between the four-vectors
pl¼ (E/c, p) and Al¼ (V/c, A).

IV. HIDDEN MOMENTUM

Even purely static electromagnetic fields can harbor mo-
mentum (Eqs. (33)–(35)). Configurations that have been
studied include

• An ideal (point) magnetic dipole m in an external electric
field E (Ref. 51):

p ¼ 1

c2
ðE#mÞ: (43)

[This is for a conventional magnetic dipole—a tiny current
loop. If the dipole is made of hypothetical magnetic
monopoles, the momentum is zero (Ref. 52).]

• An ideal (point) electric dipole pe in an external magnetic
field B (Ref. 61):

p ¼ 1

2
ðB# peÞ: (44)

• A sphere (radius R) carrying a surface charge r¼ k cos h,
where k is a constant and h is the polar angle with respect
to the z axis (its electric dipole moment is
pe ¼ 4=3pR3k ẑ). It also carries a surface current
K ¼ k0 sin h0/̂0, where k0 is another constant and h0, /0 are
the polar and aximuthal angles with respect to the z0 axis
(its magnetic dipole moment is m ¼ 4=3pR3k0 ẑ0). The mo-
mentum in the fields is (Ref. 63)

p ¼ l0

4pR3
ðm# peÞ (45)

• A charged parallel-plate capacitor (field E, volume V) in a
uniform magnetic field B (Refs. 61, 80, 57, and 43):

p¼1

2
!0ðE#BÞV: (46)

[Ordinarily, electromagnetic momentum (like electromag-
netic energy), being quadratic in the fields, does not obey the
superposition principle (that is, the momentum of a compos-
ite system is not the sum of the momenta of its parts, consid-
ered in isolation). However, if static charges are placed in an
external magnetic field, the momentum is linear in the elec-
tric field they produce, and hence the total momentum is the
sum of the individual momenta. That’s how McDonald (Ref.
61) discovered the (surprising) factor of 1/2 in Eq. (46),
which is due to momentum in the fringing fields.]

Now, there is a very general theorem in relativistic field
theory that says

If the center of energy of a closed system is at
rest, then the total momentum is zero.

[“Center of energy” is the relativistic generalization of cen-
ter of mass, but it takes account of all forms of energy, not
just rest energy:

Ð
ru d3r=

Ð
u d3r.] This certainly seems rea-

sonable; a heuristic argument is given by Calkin (Ref. 47),
and a more formal proof by Coleman and Van Vleck (Ref.
48). In the configurations described above the center of energy
is clearly at rest, so if there is momentum in the fields there
must be compensating non-electromagnetic momentum some-
where else in the system. But it is far from obvious where this
“hidden momentum” resides, or what its nature might be.

Curiously, the phenomenon of hidden momentum was not
noticed until the work of Shockley and James (Ref. 64) and
Costa de Beauregard (Ref. 50), in 1967. It was picked up im-
mediately by Haus and Penfield (Ref. 53), Coleman and Van
Vleck (Ref. 48), Furry (Ref. 51), and eventually by many
others (Refs. 47, 65, 49, and 54). Indeed, the subject remains
an active area of research to this day (Refs. 55, 58, and 59).

The simplest model for hidden momentum was suggested
by Calkin (Ref. 47) (or Ref. 2; Example 12.12); it consists of
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a steady current loop in an external electric field. The current
is treated as a stream of free charges, speeding up and slow-
ing down in response to the field. [Because the current is the
same all around the loop, in segments where the charges
are moving more rapidly they are farther apart.] Each
charge carries a (relativistic) mechanical momentum

ðmv=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& ðv=cÞ2

q
Þ, and—even though the loop is not mov-

ing and the current is steady—these momenta add up to a
total that exactly cancels the electromagnetic momentum.

Others have noted that this is an artificial model for the
current, and Vaidman (Ref. 65) considered two more realis-
tic models, an incompressible fluid, and a metal wire. The
former carries mechanical momentum because of the
remarkable (relativistic) fact that a moving fluid under pres-
sure has “extra” momentum (Ref. 56), whereas the latter,
because of induced charges on the surface of the wire, has no
momentum in the fields (and no hidden momentum to cancel
it). [This applies as well to the examples above; to be safe,
we assume that all charges are glued to nonconductors, and
the magnetic fields are produced by charged nonconductors
in motion (Refs. 51, 65, and 57).]

Hidden momentum has nothing to do, really, with electrody-
namics, except that it was first discovered in this context. The
name itself is perhaps unfortunate, since it sounds mysterious,
and a definitive characterization of hidden momentum remains
elusive. This much seems clear: it is mechanical, relativistic,
and occurs in systems that are at rest, but have internally moving
parts. [Actually, there is no reason the system has to be at rest,
but the phenomenon is much more striking in that case, and
there has not been much discussion of hidden momentum in
moving configurations. Similarly, there exists in principle hid-
den angular momentum, but since there is no rotational analog
to the center-of-energy theorem, it is less intriguing—indeed,
many examples are known in which nothing is rotating, and yet
the fields carry angular momentum with no compensating hid-
den angular momentum. The extreme example is the Thomson
dipole, consisting of a magnetic monopole and an electric
charge (Ref. 46).] It is “hidden” only in the sense that it is sur-
prising and unexpected, but it is perfectly genuine momentum.
[To this day some authors remain skeptical (Ref. 44); Mansuir-
pur (Refs. 126 and 60) calls hidden momentum “absurdity.”]

Not every case of momentum in static fields involves hid-
den momentum. A long coaxial cable connected to a battery
at one end and a resistor at the other carries electromagnetic
momentum (Ref. 2; Example 8.3), but no hidden momentum.
In this case the center of energy is not at rest; energy is flow-
ing from the battery to the resistor, and the associated momen-
tum is precisely the momentum in the fields (Refs. 45 and 62).

V. MOMENTUM AND MASS

The energy in the electric field of a uniformly charged sta-
tionary spherical shell, of radius R and charge Q, is (Ref. 2;
Example 2.8):

E ¼ Q2

8p!0R
: (47)

According to Einstein’s formula (E¼mc2) this means there
is an electromagnetic contribution to its mass, in the amount

mem1 ¼
Q2

8p!0Rc2
(48)

If the sphere is now set in motion, at a constant nonrelativis-
tic velocity v, the momentum in its electromagnetic fields is
(Refs. 18, 74, 69, 75, and 70)

p ¼ 2Q2

3Rc2
v (49)

from which we infer that there is an electromagnetic contri-
bution to its mass in the amount

mem2 ¼
2Q2

3Rc2
¼ 4

3
mem1: (50)

The momentum-derived mass is greater than the energy-
derived mass, by an infamous factor of 4/3 (Refs. 73, 71, and
72). This ratio holds for all spherically-symmetrical charge
configurations; other geometries yield different factors (Ref.
70).

The underlying source of the discrepancy has been known
for over a century. Poincaré (Ref. 76) pointed out that a
charged sphere is unstable (it would explode, from the mu-
tual repulsion of its parts), unless some other force is pro-
vided, to hold it together. This stabilizing force (whatever its
nature) has come to be known as “Poincaré stress,” and it too
contributes to the energy and momentum of the object.
When the two contributions are combined, the inconsistency
disappears. [A closely related problem is “Rindler’s para-
dox” (Ref. 77).]

More formally, the problem is that the electromagnetic
stress-energy tensor is not divergenceless in the presence of
charge and current [Eq. (29)], and as a result the integral

pl
em ¼

ð
T0l d3r (51)

does not constitute a four-vector. It is only the complete
stress-energy tensor (which in this instance would include a
contribution from the Poincaré stress) that is divergenceless,
and its integral does yield a genuine (and conserved) four-
vector (Eq. (20)).

In the early years of the 20th century, when Abraham (Ref.
66), Lorentz (Ref. 9), Schott (Ref. 19), and others dreamed of
producing a purely electromagnetic model of the electron
(Ref. 79), there was a sense that the electromagnetic fields
“ought” to yield an energy-momentum four-vector all by
themselves, and this notion has persisted—even in the face of
Poincaré’s (to my mind decisive) argument that they should
not. Rohrlich (Refs. 78 and 18) proposed to retain the equation
for electromagnetic energy in the particle’s rest frame, but
define the electromagnetic momentum by Lorentz transforma-
tion. This makes pl

em a four-vector by construction, but it
means Eq. (1) is no longer applicable in the presence of
charges and currents. [In empty space, where Jl¼ 0, the elec-
tromagnetic stress-energy tensor is divergenceless (Eq. (29)),
and the problem does not arise. Thus, the application of Eq.
(1) to electromagnetic waves in vacuum has not, to my knowl-
edge, been challenged.] Rohrlich’s suggestion was criticized
by Tangherlini (Ref. 81), Boyer (Ref. 67), and others (Ref.
68), but it has left a residue of confusion as to the “correct”
expression for electromagnetic momentum (Ref. 80).

VI. MOMENTUM IN MATTER

In the presence of materials subject to polarization (P) and
magnetization (M) it is convenient to express the laws of
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electrodynamics in terms of free charges and free currents,
since these are the ones we directly control (Ref. 2; Sec.
7.3.5):

q ¼ qf þ qb; J ¼ Jf þ Jb þ Jp: (52)

The “bound charge,” “bound current,” and “polarization
current” are

qb ¼ &r % P; Jb ¼ r#M; Jp ¼
@P

@t
: (53)

Introducing the auxiliary fields

D * !0Eþ P; H * 1

l0

B&M; (54)

Maxwell’s equations become

r % D ¼ qf ; r# E ¼ & @B

@t
;

r % B ¼ 0; r#H ¼ Jf þ
@D

@t
; (55)

If the medium is linear (as we shall assume from now on), D
and H are related to E and B by the “constitutive relations”

D ¼ !E; H ¼ 1

l
B; (56)

where ! is the permittivity and l is the permeability of the
material. [In non-linear media—such as ferromagnets—the
work done depends not only on the initial and final states of
the system but also on how it was carried from one to the
other, so the whole notion of “stored energy” loses its mean-
ing (Ref. 17; Secs. 4.10 and 10.10).]

Although the original formulas for electromagnetic energy
(Eq. (7)) and energy flux (Eq. (9)) are still perfectly correct,
they are not very useful in this context: (!0/2)E2, for instance,
is the work it would take to bring in all the charges (free and
bound) from infinity and nail them down in their final loca-
tions—but it does not include the work required to stretch all
the atomic “springs” to which the bound charges are attached.
A more useful quantity is the work done on the free charges
alone, as we bring them in from infinity, with the bound
charges (and the springs) responding however they do. The
resulting electromagnetic energy density in matter is (Ref. 2;
Problem 8.15), (Ref. 6; Sec. 6.7), (Refs. 8, 98, 113, and 114)

um ¼
1

2
!E2 þ 1

l
B2

! "
¼ 1

2
ðE % Dþ B %HÞ; (57)

and the corresponding flux (the “Poynting vector”) is

Sm ¼
1

l
ðE# BÞ ¼ ðE#HÞ: (58)

In the same spirit we might calculate the force per unit
volume on the free charges in the material:

fm ¼ qf Eþ Jf # B ¼ r % >
$

m &
@

@t
ðD# BÞ; (59)

where (Ref. 10; Art. 641), (Ref. 13; Chapter X)

ðTmÞij¼ ! EiEj&
1

2
dijE

2

! "
þ 1

l
BiBj&

1

2
dijB

2

! "

¼ EiDj&
1

2
dijE %D

! "
þ BiHj&

1

2
dijB %H

! "
: (60)

Comparison with Eq. (15) invites us to interpret

gM * ðD# BÞ (61)

as the electromagnetic momentum in a linear medium. This
was Minkowski’s proposal (Ref. 129).

However, the resulting electromagnetic stress-energy ten-
sor has the form

ðTMÞl" ¼
um ½Sm=c)
½cgM) ½&>

$
M)

! "
; (62)

and Abraham pointed out that because Sm/c= cgM Minkow-
ski’s tensor is not symmetric, and hence does not conserve
angular momentum. He suggested instead that the electro-
magnetic momentum in matter is (Refs. 82, 83, and 84).

gA *
1

c2
ðE#HÞ; (63)

while um, Sm, and >
$

m are unchanged (Ref. 11; pp. 204–205).
This entails replacing Eq. (59) by

r % >
$

m &
@

@t
gA ¼ ðqf Eþ Jf # BÞ þ fA; (64)

with the extra “Abraham force” density (Refs. 94 and 128)

fA ¼ 1& 1

n2

! "
@

@t
ðD# BÞ; (65)

where n *
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!l=!0l0

p
is the index of refraction of the me-

dium. [Most studies concentrate on dielectric materials, with
l¼l0; some treat purely magnetic materials (!¼ !0). I will
keep the discussion general, whenever possible, though I do
assume that dispersion can be neglected (i.e., ! and l do not
depend significantly on frequency).]

Thus, began a debate that has raged for more than a cen-
tury, between Minkowski’s momentum and Abraham’s.
Scores of theoretical papers have claimed to settle the issue in
favor of one or the other; experiments have been performed
with unambiguous (but contradictory) results. In recent years
the dispute has been particularly intense, because of the criti-
cal importance of optical forces in nanotechnology (Refs. 85,
97, 106, and 29).

How would one go about determining the momentum of
the electromagnetic fields in a medium? The obvious test
would be the pressure of light on the interface between two
transparent media, or on a mirror embedded in the material.
Conservation of momentum should dictate the correct for-
mula. Imagine a wave packet in vacuum, with total energy U
and momentum p (Fig. 1(a)),

U ¼ 1

2
!0E2

! "
AL; p ¼ !0

E2

2c

! "
AL ¼ U

c
(66)

(here E is the amplitude of the electric field, E/c is the ampli-
tude of the magnetic field, and we average over a full cycle).
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The same packet (with the same energy) travels more slowly
(v¼ c/n) in a transparent medium (Fig. 1(b)):

U ¼ 1

2
!E2

! "
AL

v
c
;

pM ¼ !
E2

2v

! "
AL

v
c
¼ U

v
¼ np;

pA ¼
1

c2l
E2

2v

! "
AL

v
c
¼ vU

c2
¼ p

n
:

8
>>><

>>>:

(67)

The momentum of the packet is increased (by a factor of n),
according to Minkowski, whereas according to Abraham it
decreases by the same factor (Refs. 137, 117, 135, and 89). It
should be very easy to discriminate.

Example 1. In 1953 Balazs (Ref. 87) proposed the follow-
ing (now classic) thought experiment. Start with a bar of
transparent material, its two ends coated to prevent reflec-
tions. Imagine two identical pulses of light, each of energy U
(the pulses are very short, compared to the length of the bar).
Pulse (1) passes through the bar (Fig. 2); pulse (2) passes
just outside the bar (Fig. 3). The bar itself is free to move,
but relatively heavy Mc2 + Uð Þ, so it can absorb momentum
from pulse (1) without acquiring significant kinetic energy.

Because there are no external forces, the center of energy
(X) of the system (pulse plus bar) moves at a constant rate,
and at any given time is at the same location in both cases.
During the time s that pulse (1) spends inside the bar, the
center of energy of system (2) moves a distance

DX2 ¼
1

U þMc2
½UðcsÞ): (68)

Pulse (1) does not move as far (because it travels at a
reduced speed in the medium), so the bar itself must move a
(small) distance ! to make up for it.

DX1 ¼
1

U þMc2
½Mc2ð!Þ þ Uðwþ Lþ !Þ): (69)

Equating the two (DX2 ¼D X1), we find that

! ¼ U

Mc2 þ U
ðcs& w& LÞ , U

Mc2
ðc& vÞs (70)

(note that vs ,wþ L). Evidently the momentum of the bar,
during the time pulse (1) is inside, is

pbar ¼
M!

s
¼ U

c
1& v

c

& '
: (71)

The total momentum before the pulse enters the bar (and
also after it exits) is p¼U/c; conservation requires that this
equal the momentum of the pulse while inside the bar (pin)
plus the momentum of the bar itself,

p ¼ pin þ pbar; (72)

and hence

pin ¼ p
v
c
¼ p

n
: (73)

Score one for Abraham (compare Eq. (67)).
Example 2. Imagine a monochromatic plane wave, propa-

gating in the z direction through a homogeneous linear mate-
rial, that encounters a perfectly reflecting surface at z¼ 0.
The incident and reflected fields are (Ref. 2; Sec. 9.3)

EIðz; tÞ ¼ E0 cosðkz& xtÞ x̂;

BIðz; tÞ ¼ E0

v
cosðkz& xtÞ ŷ

ERðz; tÞ ¼ &E0 cosð&kz& xtÞ x̂;

BRðz; tÞ ¼ E0

v
cosð&kz& xtÞ ŷ;

(for z -0, and zero for z> 0). The discontinuity in B deter-
mines the surface current:

K ¼ 2E0

lv
cosðxtÞ x̂: (74)

The force on an area A of surface is

F ¼ ½rEþ ðK# BÞ)A ¼ 2E2
0A

lv2
cos2ðxtÞ ẑ

¼ 2!E2
0A cos2ðxtÞ ẑ (75)

(since B is discontinuous at z¼ 0, we use the average). This
is the momentum per unit time imparted to the mirror (no
energy is delivered, if we hold the mirror stationary). Mean-
while, the momentum per unit time dumped by the electro-
magnetic wave, as it reverses direction, is

dp

dt
¼

2 !
E2

0 cos2ðxtÞ
v

! "
Av ¼ 2!E2

0A cos2ðxtÞ ẑ ðMinkowskiÞ

2
1

c2l
E2

0 cos2ðxtÞ
v

! "
Av ¼ 2

n2
!E2

0A cos2ðxtÞ ẑ ðAbrahamÞ:

8
>><

>>:
(76)

Fig. 1. A pulse of light in vacuum (a) and in a medium (b).

Fig. 2. Pulse 1.
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Point Minkowski. (For related examples see (Refs. 120, 121,
122, 123, 108, 125, and 102).)

This experiment was performed by Jones and collabora-
tors (Refs. 109, 110, and 111), and the Minkowski prediction
was confirmed. [Actually, Jones measured the force on the
mirror as a function of n, for various liquids; Minkowski
says the force is proportional to n, whereas Abraham says it
should go like 1/n. Mansuripur (Ref. 122) has argued that the
experiment would have supported Abraham had they used a
mirror that did not reverse the phase of the reflected wave (a
“perfect magnetic conductor,” instead of a perfect electric
conductor), but Kemp and Grzegorczyk (Ref. 112) show that
even in that case the Minkowski prediction is ultimately
sustained.]

Other models have been explored (Refs. 86, 96, and 135),
including ones involving diffraction (see Example 3 below),
and even purely static configurations (for which, however,
hidden momentum may have to be considered) (Refs. 116,
57, and 95). Some seem to favor Minkowski, others Abra-
ham. Beginning in the late 1960’s (Refs. 15, 4, 105, 131, and
93) something approaching a consensus emerged: Both the
Minkowski momentum and the Abraham momentum are
“correct,” but they speak to different issues, and it is largely
a matter of taste which of the two (or perhaps even one of
the other candidates that have from time to time been pro-
posed (Refs. 103, 131, 100, 124, and 136) one identifies as
the “true” electromagnetic momentum. The essential point
goes back to Poincaré (Ref. 76): in the presence of matter the
electromagnetic stress-energy tensor by itself is not con-
served (divergenceless). Only the total stress-energy tensor
carries unambiguous physical significance, and how one
apportions it between an “electromagnetic” part and a
“matter” part depends on context and convenience. Minkow-
ski did it one way, Abraham another; they simply regard dif-
ferent portions of the total as “electromagnetic” (Refs. 130,
142, 128, and 134). Except in vacuum, “electromagnetic
momentum” by itself is an intrinsically ambiguous notion.

For example, when light passes through matter it exerts
forces on the charges, setting them in motion, and delivering
momentum to the medium. Since this is associated with the
wave, it is not unreasonable to include some or all of it in the
electromagnetic momentum, even though it is purely mechani-
cal in nature. But figuring out exactly how and where this mo-
mentum is located can be very tricky. For instance, in Example
2 momentum is imparted not just to the mirror, but also to the
dielectric in front of it, so the fact that Minkowski’s momentum
balances that of the mirror is to some extent fortuitous. As
Baxter and Loudon put it (Ref. 91), “the total momentum trans-
fer has the Abraham value …the [dielectric] liquid takes up the
difference between the Abraham and Minkowski …momenta,
which is eventually transferred to its container.”

One would like to write down, once and for all, the com-
plete and correct total stress-energy tensor—electromagnetic
plus mechanical. Unfortunately, this depends on the detailed
nature of the material (Refs. 127 and 132), and in realistic
theories can be forbiddingly complicated.

What exactly do the two momenta represent, physically,
and why is it that some contexts seem to favor the one or the
other (Ref. 133)? Recently, several authors (Refs. 90, 104,
117, 107, 91, and 101) and especially Barnett (Refs. 88 and
89) have noted that there is a parallel ambiguity between the
“kinetic” momentum (mv) of a particle and its “canonical”
momentum. Abraham’s field momentum is associated with
the former, and Minkowski’s with the latter; the conserved
total is

ptotal ¼ pkinetic þ
ð

gA d3r ¼ pcanonical þ
ð

gM d3r: (77)

You can use either the Abraham momentum or the Minkow-
ski momentum for the fields, as long as you combine it with
the appropriate momentum for the particles. In Example 1
we used the kinetic momentum of the bar (Eq. (71)), so it
was appropriate in this case to use the Abraham momentum
for the fields. Baxter and Loudon (Ref. (91)) associate
“Abraham …momentum with the motion of a dielectric
specimen as a whole and …Minkowski momentum with the
motion of objects embedded in the dielectric.”

There are several excellent reviews of the entire contro-
versy [and at least one dissertation (Ref. 92)]: Brevik (Ref.
93) offers a detailed survey of the relevant experiments, Pfei-
fer et al. (Ref. 132) is the most comprehensive, Milonni and
Boyd (Ref. 128) and Baxter and Loudon (Ref. 91) are the
most up-to-date (and in my opinion the clearest and most ac-
cessible). But the final word on this vexed subject has cer-
tainly not been written—indeed, the frequency of papers
continues to grow.

VII. MOMENTUM OF PHOTONS

In 1900 Max Planck (Ref. 143) proposed that electromag-
netic waves come in little squirts (“quanta”), with energy

E ¼ h"; (78)

where " is the frequency and h is the Planck’s constant
(empirically, h¼ 6.626# 10& 34 J s). Planck did not pretend
to know why the energy is quantized—he assumed it had
something to do with the emission process. In 1905 Albert
Einstein (Ref. 141) reinterpreted Planck’s quanta as
“particles” of light (Gilbert Lewis suggested the name
“photon” in 1926). Einstein’s idea was widely ridiculed
(Ref. 12; Secs. 18a and 19f) until 1923, when Compton
(Ref. 140) accounted for the change in wavelength of light
scattered from a charged particle by treating the light as a
massless particle with energy given by Planck’s formula
and momentum dictated by the relativistic invariant
E2& p2c2¼m2c4:

p ¼ E

c
¼ h"

c
: (79)

For an authoritative history see Pais’s biography of Einstein,
“Subtle is the Lord” (Ref. 12).

Fig. 3. Pulse 2.
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The photon picture offers a more tangible way to think
about electromagnetic momentum: Instead of the rather
abstract notion of momentum stored in fields, it is simply the
total momentum of the photons present. In particular, the
photon picture illuminates the Abraham–Minkowski contro-
versy about electromagnetic momentum in a dielectric me-
dium. Is the momentum of a photon in matter p/n, as
Abraham would have it, or pn, as Minkowski requires (Refs.
104, 138, 88, and 89)?

pA ¼
1

n

h"

c

! "
ðAbrahamÞ

pM ¼ n
h"

c

! "
ðMinkowskiÞ

8
>><

>>:
(80)

Some of the classic examples can be presented more cleanly
in this language (Refs. 119 and 88), and it is essential in ex-
plicitly quantum mechanical arguments such as the follow-
ing (Refs. 139, 142, and 91).

Example 3. The size of the central maximum in single-slit
diffraction can be estimated using the uncertainty principle,
DpDx.!h=2. Here Dx is the width of the slit, w, so

Dp.!h=2w: (81)

The resulting angular spread of the beam is

Dh ¼ 2
Dp

p
¼ c

2p"w
: (82)

Now suppose the whole system is emmersed in a transparent
medium with index of refraction n. Equation (81) is still the
uncertainty in p, but p itself is now given by Eq. (80). Evi-
dently the new angular divergence is

Dh0 ¼
n Dh ðAbrahamÞ
1

n
Dh ðMinkowskiÞ

(
(83)

Does the pattern spread out, as Abraham would have it, or
does it contract, as Minkowski predicts? In point of fact it
contracts (that is why the oil-immersion microscope has bet-
ter resolution).

It is no surprise that Minkowski wins this one. The mo-
mentum that goes in the uncertainty principle is canonical
momentum, and we have seen (Eq. (77)) that canonical mo-
mentum is associated with the Minkowski form.

1. The Feynman Lectures on Physics, R. P. Feynman, R. B. Leighton, M.
Sands (Addison-Wesley, Reading, MA, 1964), Vol. II, Section 27-6. (E)

2. Introduction to Electrodynamics (Third edition), D. J. Griffiths
(Addison Wesley, Upper Saddle River, NJ, 1999). (I)

3. Introduction to Elementary Particles (Second edition), D. J. Griffiths
(Wiley-VCH, Weinheim, 2008). (I)

4. Foundations of Electrodynamics, S. R. de Groot and L. G. Suttorp
(North-Holland, Amsterdam, 1972). (A)

5. Classical Electromagnetic Radiation (Third edition), M. A. Heald
and J. B. Marion (Saunders, Fort Worth, TX, 1995). (I)

6. Classical Electrodynamics (Third edition), J. D. Jackson (Wiley, New
York, 1999). (A)

7. Concepts of Mass in Classical and Modern Physics, M. Jammer (Har-
vard U.P., Cambridge, 1961; Dover reprint, New York, 1997). (E)

8. Electrodynamics of Continuous Media (Second edition), L. D. Lan-
dau and E. M. Lifshitz (Addison-Wesley, Reading, MA, 1984). (A)

9. The Theory of Electrons, H. A. Lorentz (1909; Dover reprint, New
York, 1952). (I)

10. A Treatise on Electricity and Magnetism, J. C. Maxwell (Oxford Uni-
versity, Oxford, 1873; Dover reprint, New York, 1954; Clarendon
reprint, Oxford, 1998). (I)

11. The Theory of Relativity (Second edition), C. Møller (Clarendon,
Oxford, 1972). (A)

12. Subtle is the Lord, A. Pais (Clarendon, Oxford, 1982). (E)
13. Classical Electricity and Magnetism (Second edition), W. K. H. Pan-

ofsky and M. Phillips (Addison-Wesley, Reading, MA, 1962). (A)
14. Introduction to the Quantum Theory (Third edition), D. Park

(McGraw-Hill, New York, 1992). (I)
15. Electrodynamics of Moving Media, P. Penfield Jr. and H. A. Haus

(MIT, Cambridge, MA, 1967). (A)
16. The Theory of Heat Radiation, M. Planck (1913; Dover reprint, New

York, 1959). (I)
17. Electromagnetic Fields: Sources and Media, A. M. Portis (Wiley,

New York, 1978). (I)
18. Classical Charged Particles, F. Rohrlich (Addison Wesley, Reading,

MA, 1965), Sections 2-2 and 6-3. (A)
19. Electromagnetic Radiation, G. A. Schott (Cambridge U.P., Cambridge,

1912). (A)
20. Classical Mechanics, J. R. Taylor (University Science Books, Sausalito,

CA, 2005), Sections 7.1 and 7.9. (I)
21. Electricity and Matter, J. J. Thomson (Charles Scribners, New York,

1908), pp. 30–33. (E)

JOURNAL ARTICLES

A. Background

22. “Linear momentum density in quasistatic electromagnetic systems,” J.
M. Aguirregabiria, A. Hernández, and M. Rivas, Eur. J. Phys. 25,
555–567 (2004). (I)

23. “On the uniqueness of the vector for energy flow density in electromag-
netic fields,” U. Backhaus and K. Schäfer, Am. J. Phys. 54, 279–280
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