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The fields of a charged particle in hyperbolic motion
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A particle in hyperbolic motion produces electric fields that appear to terminate in mid-air,
violating Gauss’s law. The resolution to this paradox has been known for sixty years but exactly
why the naive approach fails is not so clear. © 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4875195]

I. INTRODUCTION

In special relativity, a particle of mass m subject to a con-
stant force F undergoes “hyperbolic motion”:

2(t) = \/b? + (c1)?, (1

where b = mc?/F. The particle flies in from infinity along
(say) the z-axis, comes to rest at z(0) = b, and returns to infin-
ity; its velocity approaches *c¢ asymptotically as t — *oo
(Fig. 1).

Because information cannot travel faster than the speed of
light, the region below the main diagonal (z=—ct) is igno-
rant of the particle’s existence—the particle is “over the
horizon.” For someone at the origin it first comes into view
at +=0. If the particle is electrically charged, its fields are
necessarily zero for all z <0, at time r=0. But the electric
field for z > 0 is not zero, and as we shall see the field lines
appear to terminate in mid-air at the xy-plane." This would
violate Gauss’s law; it cannot be true. Our task is to locate
the error and fix it.?

In Sec. II, we calculate the electric field of a charge ¢ in
hyperbolic motion, at time r=0. A plot of the field lines
shows that they do not go continuously to zero at the xy-
plane. In Sec. III, we explore the case of “truncated” hyper-
bolic motion (hyperbolic motion back to time ¢=—t,,
adjoined to constant velocity for earlier times). In this case,
the field lines make a sharp turn as they approach the
xy-plane, and there is no violation of Gauss’s law. In Sec.
IV, we work out the potentials for a charge in hyperbolic
motion, finding once again that we must adjoin “by hand” a
term inspired by the truncated case. In Sec. V, we ask how
the naive calculations missed the extra term, and conclude
with the puzzle unresolved. Appendices A and B supply
some algebraic details, and Appendix C examines the radia-
tion from a charge in hyperbolic motion; surprisingly, the
“extra” terms do not contribute.

II. ELECTRIC FIELD OF A CHARGE IN
HYPERBOLIC MOTION

We begin by calculating the electric field at the point
r=(x,0,z), with z > 0. According to the standard formula,3

E(r,?) d * 3 [(c2 —vHu+2x (ux a)]7 2)

A (ew)’

2=XxX+ (z — \/b2+(ct,.)2) 7, Q3)
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u:c&.—v:%(m—w), )
2
v, )
b2 + (ct,)?
and
2
a=— G ©6)

(o)

The retarded time ¢, is defined in general by
2v=c(t—t), @)

but for the moment we’ll assume =0 (so . is negative). Then

2
(ct,) =%+ <z — /b2 + (ct,)2>
=242 = 22\/B 4 (ct,)? + B+ (ct,)’, (B)

and hence
ct
A
b \/ >Z
q
Fig. 1. Hyperbolic motion.
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1 2 2
cty = 5 \/(Xz + 224+ b2)" — (2zb)°. 9)
Putting all this together and simplifying gives
q_1)2 (2= —b) i+ (22)%

o (\/(22 + a2+ b2)° — (2zb)2>

That is for z>0, of course; for z <0 the field is zero. In
cylindrical coordinates (s, ¢, z), then®

E(x,0,2) = 5. (10)

_ﬁ (2 -2 —bp2)7+2zs

E(s, ¢,2) = — ( N RO <22”)2)

3 0(2)7

(1)

where 0(z) is the step function (1 if z > 0, otherwise 0). This
field is plotted in Fig. 2; the field lines are circles, centered
on the s axis and passing through the instantaneous position
of the charge.

As required by Gauss’s law, V.-E =0 for all z>0
(except at the point s =0, z = b, where the charge is located).
However, E is plainly not divergenceless at the xy-plane,
where the field lines terminate in mid-air. Indeed, the field
immediately to the right of the z =0 plane is

qb? 1

+) —
E(S7¢a0 ) - T€o (S2 +b2)2

z, 12)

and the flux of E through a cylindrical Gaussian “pillbox” of
radius r, centered at the origin and straddling the plane, with
infinitesimal thickness, is

b2 r 1 2
JE-da:—q—J —22nsds:—i(ﬁ>,
Teo Jo (52 + b?) €\ +b

(13)

S A

Fig. 2. Field of a charged particle in hyperbolic motion at =0 (particle at
z=b).
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even though the pillbox encloses no charge. Something is
obviously amiss—we appear to have lost a crucial piece of
the field at z=0.

III. TRUNCATED HYPERBOLIC MOTION

Suppose the acceleration does not extend all the way back
to t = —oo but begins at time #y = —ab/c (for some o > 0),
when the particle was at

2(t0) = bV/1 + a2, (14)

and its velocity was

oc
Z; 15
T (15)

prior to £, the velocity was constant. In other words, replace
Eq. (1) with

V(l()) = —

1
———(b—uact) (t<ty=—oub/c)
=4 VI+® (16)
b2 + (ct)* (t > o).

At time =0, for all points outside a sphere of radius
r = —cty = ab, centered at z(¢y), the field is that of a charge
moving at constant velocity—the “flattened” Heaviside field’
radiating from the place ¢ would have reached, had it contin-
ued on its original flight plan (b/v/1 + 0?):

_q 1—(v/e)) R
dneo [1 — (v/c) sin0] 2R3

an

The left edge of the sphere is at (\/1 +o? — oc)b (which is
always positive, but goes to zero as o — o0). Inside the
sphere, where news of the acceleration has been received,
the field is given by Eq. (11) (Fig. 3). The field lines

S A

%

Fig. 3. Field lines for truncated hyperbolic motion (b= 1, & =12/5).
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evidently join up in a thin layer at the surface of the sphere,
representing the brief interval during which the motion
switches from uniform to hyperbolic.

As alpha increases (that is, as 7, recedes into the more dis-
tant past), the radius of the sphere increases, and its left sur-
face flattens out against the xy-plane. Meanwhile, the
“outside” field compresses into a disk perpendicular to the
motion, and squeezes also onto the xy-plane. The complete
field lines now execute a 90° turn at z =0, as required to res-
cue Gauss’s law. Indeed, for o — oo the constant velocity
portion of the field approaches that of a point charge moving

at speed c:

q s
E =—=9(2). 18
(5.:2) = 30— 0(2) a8)
Using the same Gaussian pillbox as before, this field yields
q
E da=_—"—-(2 == 1
J da o "2( nr)J&(z) dz “ (19)

This is appropriate, of course—had the particle continued at
its original velocity (c), it would now be inside the box (at
the origin).

Awkwardly, however, this is not what was needed to can-
cel the flux from the hyperbolic part of the field [Eq. (13)].
For that purpose the field on the xy-plane should have been
5 5.

-4 5 20
2meg s2 + b2 (20

E(s, ¢,2)

It must be that the “connecting” field in the spherical shell
(the field produced during the transition from uniform to
hyperbolic motion), which (in the limit) coincides with the xy-
plane and which we have ignored, accounts for the difference,
as suggested in Fig. 4. The net field in the xy-plane consists of
two parts: the field E’ due to the portion of the motion at con-
stant velocity, given (in the limit « — oco) by Eq. (18), and the
connecting field that joins it to the hyperbolic part. It is the

S'A

Constant Velocity Field

z

Fig. 4. Truncated hyperbolic motion for large o, showing the “connecting”

field.
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sum of these fields that gives Eq. (20). The true field of a
charge in hyperbolic motion is evidently’

22— b7+ 2zs

) =2 06
(\/ (2 +s2+b2) — (22[9)2)
4

E

s
—0
2meg 52 + b? (2,

ey

and it does not look like Fig. 2, but rather Fig. 5.
As a check, let’s calculate the divergence of E. Writing
E = E40(z) + E; (in an obvious notation), we have

V- [Eob(z)] = (V- Ep)0(z) + Eg - [V(0)]. 22)

The first term gives p/eg, for the point charge ¢ at z=1b; as
for the second term,

=i =0(2)1, (23)

Vo(z) %

S0
V- [Egf(2)]
A
€ T [(22 b - (22b)2}

» 1
:ﬁf"—iz 3(2).
€ TeEo (5% + b?)

3/2 0 (Z)
24)

Meanwhile,

v.E, =4 v.[;

- 2meg s2 4 b?

q 18[ s
" 2mey s Os |52 + b2

L
Y

Fig. 5. Field of a particle in hyperbolic motion (corrected).

5<z>}
5(2)} (25)

SO
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qg b

VB =L 7
Teo (5% + b?)

o(z). (26)

This is just right to cancel the extra term in V - [Ey6(z)], and
Gauss’s law is sustained:

v.E=". 27
€0

IV. POTENTIAL FORMULATION
A. Liénard-Wiechert potentials

The truncated hyperbolic problem guided us to the “extra”
(delta-function) term in Eq. (21), but it does not explain how we
missed that term in the first place. Did it perhaps get lost in going
from the potentials to the fields? Let’s work out the Liénard-
Wiechert potentlals and calculate the field more carefully:

q 1 (s + 224+ -T?)

V=_1

q 1

v
b= o/ i

V(r,t) = A(r,t) = 2

(28)

where 2 and v are evaluated at the retarded time ¢,. For the
point r = (s, z),

-1
A=)

- Z\/4[72 —22)+

(T=ctand T, = ct,).9 This is for z > —T; as we approach
the horizon (z — —T), the retarded time goes to —oo, and
for z < —T there is no solution with 7 > T,..

The scalar potential is

T, = T(s* + 22+ b* = T%)

F(2+2+02 -T2 (29)

0T +2), (30)

47'560 (

\/ 4p*(T* — 22) +

and the vector potential is

(S’2+Z2+b2_

72)?

1 T 2 2 2_T2
A=-1 z— (“+z+b ) O(T +z) 2. &)

4neoe (T° — 2) \/4172(T2 )4 (2422 —T2)
The electric field is
2 (22T
:_vv_aiAiﬂ 228 — (s — 2+ b*+T°)2 o +2) 32)
ot TEY

3/2
[402(12 = 2) 4 (2 4 2 4 52— T2)?]

which reduces to Eq. (21)—without the extra term—when ¢ = 0. Notice that the derivatives of the theta function contribute
nothing (we use an overbar to denote the potentials shorn of their 0’s):

_ _ 1 b2
—O(T +2)(V + cAy) = 74i5(T+z)T24 (T + >(S +2 40— T%)
TLEQ ( — 22 \/4b2 (S2 +22+b2 )2

NT 2 b2

_q 6(T+z)|,  (s+b7) _o. .
 dmey (T —2) (s2 4+ b?)

Evidently ther.e is something wrong with the Liépard- V; -0, A} _ q 52 0z +T), (34)

Wiechert potentials themselves; they too are missing a Zneocs‘

critical term. To fix them, we play the same game as before:
truncate the hyperbolic motion. We might as well go straight
to the limit, with the truncation receding to —oo; we need

r_ q S
the potentials of a point charge moving at speed c. There are Vir=— 21e In <Z> oz +T),

two candidates in the literature'® [which differ by a gauge s (35)
transformation, though both satisfy the Lorenz condition, A, = 9 1n (7) 0(z+T)z

V)0t = —A(V - A)l: 2mepc \b
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(in the second case b could actually be any constant with the
dimensions of length, but we might as well use a parameter
that is already on the table).

We also need the “connecting” potentials; our experience
with the fields [going from Eq. (18) to Eq. (20)] suggests the
following ansatz

q S

Vir=—

<S :b2> (z+7),

+b
Ay = 1 0 T
T dreoc n( b? > (z+T)z

It is easy to check, in either case, that we recover the correct
“extra” term in the field [Eq. (21)]. However, we prefer V,
and A, because they preserve the Lorenz gauge. 1

49,
47eg 37)
q

Vi=0, Aj=——"———"0(z+T), (36) The correct potentials for a point charge in hyperbolic
[ ] 2meoe (52 + b?) ( ) motion are thusP
1 b2 2 b2
_ 4 z(s? + 22 + 0(T+z)71n(s +2 sz+1)\ 38)
4meo | (T? \/4b2 )+ (2 +2 4+ — T2)2 b
q 1 T(s® + 22+ b*> —T? 24 )
" dnege | (T2 = 2) o 0(T +z)+1n o 0(z+T) pz. (39)

How did the standard Liénard-Wiechert construction miss
the extra (delta function) terms? Was it perhaps in the deri-
vation of the Liénard-Wiechert potentials from the retarded
potentials?

B. Retarded potentials

Let’s take a further step back, then, and examine the
retarded potentlal

1 p(l‘ Iy ) 3.
= 4
V(s,z) o J N d’r (40)
In this case
p(r,1) = gd° (r — /B2 + (ct)? i) (41)

\/4[72(7"2 _ ZZ) + (82 + 72 + b2 —

72)?

and we need p(r', ), where (for t =0)

et = e =¥ = P4 )P - )
(42)
Thus

p(r 1) = qd (x'f( +yy+71z

R o by G- 2.

(43)

Because of the delta function, the denominator (» =
[r —r'|) in Eq. (40) comes outside the integral—with r’,
now, at the retarded point (where the argument of the delta-
function vanishes). What remains is

Jp(r', 1) d’r' = qJé(

(z - \/b2 =XV 4+ G-y + (- Z/)Z) dx'dy'd?'

—qJé(z’ b? 452 + (zfz’)z) dz :qJé(f(z’)) dZ =0, (44)

where s> = x> + y2 and

f)=7Z =P +2+(z—2) (45)

The argument of the delta function vanishes when 2’ = z,
given by f(zg) =0:
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20 = \/b2 + 82+ (z — z9)?, (46)
or

1
20 =~ (s* + 22+ 7). (47)
2z

Note that zy is non-negative, so there is no solution when
z< 0. Now

Joel Franklin and David J. Griffiths 759



-
Ty 2 (48)
: B4s?+(z—2)
S0
— 272
/ = 1 —(Z ZO) = i = = 4
f (ZO) * Zo ) S2 + 22 + b2 ’ ( 9)
and hence
S(/(2)) = i O — 20)
|f(20)]
s+ 22+ b
- (T 8(7' — zo). (50)
Thus
§2 + 22 + b?
QZQ(T 0(2). (51)
The retarded potential is
1 0
=— 52
4rey 2’ (52)

and from Eq. (29) (with r=0)

R o 1 2 2
r= —ct, = —T, = Z\/(s2 24— (2622 (53)

SO

22 g2
Ve q (s* + 2%+ b%) 00), (54)

4meo Z\/(SZ + 22+ b2)* — (2bz)?

and we recover Eq. (30) (for = 0). Still no sign of the extra
term in Eq. (38); evidently the retarded potentials themselves
are incorrect, in this case.

V. WHAT WENT WRONG?

Straightforward application of the standard formulas for
the field [Eq. (2)], the Liénard-Weichert potentials [Eq.
(28)], and the retarded potential [Eq. (40)], yield incorrect
results (inconsistent with Maxwell’s equations) in the case of
a charged particle in hyperbolic motion—they all miss an
essential delta-function contribution. How did this happen?
Bondi and Gold'* write,

“The failure of the method of retarded potentials to
give the correct field is hardly surprising. The
solution of the wave equation by retarded potentials
is valid only if the contributions due to distant
regions fall off sufficiently rapidly with distance.”

Fulton and Rohrlich'® write,

“The Liénard/Wiechert potentials are not valid in the
present case at T+ z=0, because their derivation
assumes that the source is not at infinity.”

But where, exactly, do the standard derivations make these
assumptions, and how can they be generalized to cover the

760 Am. J. Phys., Vol. 82, No. 8, August 2014

hyperbolic case?'® Zangwill17 offers a careful, step-by-step
derivation of the retarded potentials; one of those steps must
fail, but we have been unsuccessful in identifying the guilty
party. And although it is easy to construct configurations for
which the retarded potentials break down, we know of no
other case for which the field formula [Eq. (2)] fails.
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APPENDIX A: RETARDED TIME FOR POINTS ON
THE xy-PLANE

The retarded time for a point in the xy-plane, at time ¢, is
given by

c(t—1) =/ +y>+:2(1,)" = \/xz +y2+ b2+ 22,

(A1)
or
AP = 2c4t + P =2 4y + b+ P (A2)
SO
2.2 2 2 2 2 2
2=yt =D -
=" -7 -2 (A3)
2c2t 2t
where
2 2 b2
L=rTY T (A4)

In Fig. 6, ¢, is plotted (as a function of ¢) for a = 1. It is clear
that #. < ¢ for all positive ¢, but 7, > ¢ for all negative ¢. The
latter is no good, of course, but we do get an acceptable solu-
tion for all > 0. For r =0 the retarded time is (minus) infin-
ity, regardless of the values of x and y.

Al
-4

4}
Fig. 6. Graph of the retarded time, as a function of ¢, for points in the xy-plane.
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APPENDIX B: POTENTIALS 2V
d=2r———=(T—T,) - (z— /b2 +T?
c

The vector from the (retarded) position of the charge to
the point r = (s, 2), is T,

VT2
a:s+<zﬂ/b2+T,?)i. (B1)

2
T—T,—a—\/s2+<z—,/b2+Tf). (B2) Ny

2227,
Squagng twice and solving the resulting quadratic yields Eq. d=T— (2 +22 + b2 — T2) + 21T,
(29). "
(zéi)eifserring back to Egs. (3) and (5), the denominator in Eq. Putting in Eq. (29), and simplifying,
J (T — 22)\/(s2 + 224+ — T2)2 + 4b2(T? — 2?)
T\/(SZ + 22 4 b2 — T2)* 4 4b2(T? — 22) — 2(s2 4 22 + b2 — T?)
SO
g1 q 1 T 2(s? + 22+ b2 —T?)
dnegd  4mey (T? — 22) \/4b2(T2 ) (P42 B — T2)2
[Eq. (30)].
Meanwhile, the vector potential [Eq. (28)] is
v T, . 2T, q \.
A==V= Vi=
c2 N/ T,? z c[(s? + 22 + b2 — T2) + 27T, (4neod)z
q 27T, .
= YA
dnege ) T[(s*> + 22 + b> — T?) + 2TT,] — 22°T,
1 2 2 b2 _ T2
:4q R - (s +z° + ) ;
TEQC \/4b2(T2 )+ (P42 + b — T2)2
[Eq. B1)].
APPENDIX C: RADIATION
From the potentials [Eqgs. (38) and (39)], we obtain the fields:>°
qb* (2 -2 —b*—T*i+2zs q s
E(S,(f),Z,[)i; 32 6(Z+T)+§S2‘|-—bz 5(Z+T)7
"+ 202127 a2 1) 0
B qb? 2Ts q
B(s, 4.2,0) = Teye / 0z +T) 2megc 2 + b?

3/2
[(22 + 52 b2 —T2)" — 4b2(22 — TZ)}
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T,
V2 +T?

It pays to use Eq. (B2) to eliminate the radical:

The retarded time is given by 27 \/m _ (s2 IR T2) LT,

3:+1) =16 xE)

(B3)

(B4)

(BS)

(B6)

(B7)

(B8)

(ChH

(C2)
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®

(a)

. N
N

Fig. 7. Radiation from the charge at time zero (for b=1), showing the
spherical surface and the delta-fields at: (a) T=0, (b) T=1/2, (¢c) T=1.

To calculate the power radiated by the charge at a time ¢,
(when it is located at the point z(#,) = \/b*> — T?), we inte-
grate the Poynting vector

S = L (E x B) (C3)

Ho

over a sphere of radius » = T — T, centered at z(z,), and take
the limit as » — oo with T,.=ct, held constant. (That is, we
track the energy as it flows outward at the speed of light;
“radiation” is the portion that makes it “all the way to infin-
ity.”) We need the fields, then, at later and later times, as the
sphere expands. Now, the delta-function term is confined to the
plane z=-T, which recedes farther and farther to the left as
time goes on (Fig. 7), and the expanding sphere never catches
up. Curiously, then, the delta-function term does not contribute
to the power radiated by the charge at any (finite) point on its
trajectory. By the same token, the spherical surface is always in
the region where z + 7 > 0, so we can drop the theta functions.

Now,

S:'uio(ExB) :@[Ex (2 x E)]
= L[ G E)E], (C4)
Hoc

and on the surface of the sphere da = % sin0 d0 d¢ 4, giving

ﬁ [E2? — (- E)*]sin0d0d. (C5)
0

S.-da=
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The power radiated is*'

P = lim {ij(l —'LV> [E%2 — (n-E)] sinOd@d(j)}.

1—00 | o€ 2
(C6)
Using the relevant fields [Eq. (C1)], we find
P =l (”b + Ta>2 s cq’ 7
= lim = .
100 2 6meyh? 6megh?

Perhaps surprisingly, it is constant (independent of T,, and
hence the same for all points on the trajectory),” and it
agrees with the Liénard formula®® (for collinear v and a)

2

_ 62
T 6mege3 ra €8
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®Electronic mail: griffith@reed.edu
"The entire xy-plane first “sees” the charge at time ¢ = 0. If this seems sur-
prising, refer to Appendix A.
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conjecture.

7A. Zangwill, Modern Electrodynamics (Cambridge U.P., Cambridge,
2013), Sec. 20.3.

'8C. LaMont, “Relativistic direct interaction electrodynamics: Theory and
computation,” Reed College senior thesis, 2011.

"“The sign of the radical is enforced by the condition T > T;..

20Any reader with lingering doubts is invited to check that these fields sat-
isfy all of Maxwell’s equations. Note the critical role of the delta functions
in Gauss’s law and the Ampere-Maxwell law.

2IThe factor (1 — 2 - v/2c) accounts for the fact that the rate at which energy
leaves a (moving) charge is not the same as the rate at which it (later)
crosses a patch of area on the sphere. See Ref. 3, page 485.

2>The fact that a charged particle in hyperbolic motion radiates has interest-
ing implications for the equivalence principle—in fact, it is this aspect of
the problem that has attracted the attention of most of the authors cited
here. Incidentally, the particle experiences no radiation reaction force—
see R. Peierls, Surprises in Theoretical Physics (Princeton U.P., Princeton,
NJ, 1979, Chapter 8.)

ZReference 3, Eq. (11.73).

Cartoon

A colleague in Art History notes that this is a lithographic print by Honoré Daumier (1808-1879) that appeared in the
newspaper Le Charivari on October 8, 1852. The complete title translates as “An ascension in autumn: Mr. Thévelin
launches into an aquatic-aerial exercise on his trapeze”, presumably from the hydrogen gas balloon in the distance.
The print is in the Greenslade Collection. (Notes by Thomas B. Greenslade, Jr., Kenyon College)
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