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A recent article by Mansuripur claims that the Lorentz force law is incompatible with special
relativity. We discuss the “paradox” on which this claim is based. The resolution depends on
whether one assumes a “Gilbert” model for the magnetic dipole (separated monopoles) or the
standard “Ampère” model (a current loop). The former case was treated in these pages many years
ago; the latter, as several authors have noted, constitutes an interesting manifestation of “hidden
momentum.” VC 2013 American Association of Physics Teachers.
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I. INTRODUCTION

On May 7, 2012, a remarkable article appeared in
Physical Review Letters.1 The author, Masud Mansuripur,
claimed to offer “incontrovertible theoretical evidence of the
incompatibility of the Lorentz [force] law with the funda-
mental tenets of special relativity,” and concluded that “the
Lorentz law must be abandoned.” The Lorentz law,

F ¼ q½Eþ ðv % BÞ'; (1)

tells us the force F on a charge q moving with velocity v
through electric and magnetic fields E and B. Together with
Maxwell’s equations, it is the foundation on which all of
classical electrodynamics rests. If it is incorrect, 150 years of
theoretical physics is in serious jeopardy.

Such a provocative proposal was bound to attract atten-
tion. Science2 published a full-page commentary, and within
days several rebuttals were posted.3 Critics pointed out that
since the Lorentz force law can be embedded in a manifestly
covariant formulation of electrodynamics, it is guaranteed to
be consistent with special relativity,4 and some of them iden-
tified the specific source of Mansuripur’s error: neglect of
“hidden momentum.” Nearly a year later Physical Review
Letters published four rebuttals,5 and Science printed a
follow-up article declaring the “purported relativity paradox
resolved.”6

Mansuripur’s argument is based on a “paradox” that was
explored in this journal by Victor Namias and others7 many
years ago: a magnetic dipole moving through an electric field
can experience a torque, with no accompanying rotation. In
Sec. II, we introduce Mansuripur’s version of the paradox, in
simplified form, and explain Namias’s resolution. The latter
is based on a “Gilbert” model of the dipole (separated mag-
netic monopoles); it does not work for the (realistic)
“Ampère” model (a current loop). For Amperian dipoles, the
resolution involves “hidden” momentum, so in Sec. III, we
discuss the physical nature of this often-misunderstood phe-
nomenon. Mansuripur himself treated the dipole as the point
limit of a magnetized object, so in Sec. IV, we repeat the cal-
culations in that context (for both models), and confirm our
earlier results. In Sec. V, we discuss the Einstein–Laub force
law, which Mansuripur proposed as a replacement for the
Lorentz law and in Sec. VI, we offer some comments and
conclusions.

II. GILBERT DIPOLES: NAMIAS’S RESOLUTION

First the paradox: In S0 (the “proper” frame), there is an
ideal magnetic dipole m ¼ m0 x̂ at ð0; 0; dÞ, and a point
charge q at the origin, both at rest. The torque on m is (obvi-
ously) zero. Now examine the same configuration in S (the
“lab” frame), with respect to which S0 moves at constant
speed v in the z-direction (Fig. 1). In S the (moving) point
charge generates electric and magnetic fields,

Eðx; y; z; tÞ ¼ q

4p!0

c
R3
½x x̂ þ y ŷ þ ðz( vtÞ ẑ'; (2)
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(moving) magnetic dipole acquires an electric dipole
moment8

p ¼ 1
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ðv %mÞ ¼ 1

c2
vm0 ŷ : (4)

The torque on the dipole is

N ¼ ðm% BÞ þ ðp% EÞ ¼ qm0

4p!0

v
c2d2

x̂ (5)

Fig. 1. Electric charge q and magnetic dipole m in proper (primed) and lab
(unprimed) frames.
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(by Lorentz transformation, d ¼ cðz( vtÞ; the magnetic
contribution is zero because B vanishes on the z-axis). The
torque is zero in one inertial frame, but non zero in the
other! Mansuripur concludes that the Lorentz force law (on
which Eq. (5) is predicated) is inconsistent with special
relativity.

This “paradox” was resolved years ago by Victor
Namias.7 The standard torque formulas (p% E and m% B)
apply to dipoles at rest, but they do not hold, in general, for
dipoles in motion. Suppose we model the magnetic dipole as
separated monopoles (Fig. 2). The “Lorentz force law” for a
magnetic monopole q* reads9

F ¼ q*½B( ð1=c2Þv % E'; (6)

so the torque10 on a moving dipole m ¼ q*ðrþ ( r(Þ is

N ¼ ðrþ % FþÞ þ ðr( % F(Þ

¼ ðm% BÞ ( 1

c2
m% ðv % EÞ:

(7)

But m% ðv % EÞ ¼ v % ðm% EÞ þ ðm% vÞ % E, so

N ¼ ðm% BÞ ( 1

c2
ðm% vÞ % E( 1

c2
v % ðm% EÞ

¼ ðm% BÞ þ ðp% EÞ ( 1

c2
v % ðm% EÞ: (8)

There is a third term, missing in Eq. (5), which (it is easy to
check) exactly cancels the offending torque; the net torque is
zero in both frames.

III. AMP!ERE DIPOLES: HIDDEN MOMENTUM

Namias believed that his formula [Eq. (8)] applies just as
well to an Ampère dipole as it does to a Gilbert dipole. He
was mistaken. An Ampère dipole in an electric field carries
“hidden” momentum,11

ph ¼
1

c2
ðm% EÞ: (9)

Because it is crucial in understanding the resolution to
Mansuripur’s paradox, we pause to review the derivation of
this formula using a simple model.

Imagine a rectangular loop of wire carrying a steady cur-
rent. Picture the current as a stream of noninteracting posi-
tive charges that move freely within the wire.12 When a
uniform electric field E is applied (Fig. 3), the charges accel-
erate up the left segment and decelerate down the right one.
Question: What is the total momentum of all the charges in
the loop? The left and right segments cancel, so we need

only consider the top and bottom. Say there are Nt charges in
the top segment, going to the right at speed vt, and Nb

charges in the lower segment, going to the left at (slower)
speed vb. The current (I ¼ kv) is the same in all four seg-
ments (otherwise charge would be piling up somewhere).
Thus

I ¼ qNt

l
vt ¼

qNb

l
vb; so Ntvt ¼ Nbvb ¼

Il

q
; (10)

where q is the charge of each particle and l is the length of
the rectangle. Classically, the momentum of a single particle
is p¼mv, where m is its mass, so the total momentum (to the
right) is

pclassical ¼ mNtvt ( mNbvb ¼ m
Il

q
( m

Il

q
¼ 0; (11)

as one would certainly expect (after all, the loop as a whole
is not moving). But relativistically the momentum of a parti-
cle is p ¼ cmv and we get

prelativistic ¼ ctmNtvt ( cbmNbvb ¼
mIl

q
ðct ( cbÞ; (12)

which is not zero, because the particles in the upper segment
are moving faster. In fact, the gain in energy (cmc2), as a
particle goes up the left side, is equal to the work done by
the electric force qEw, where w is the height of the rectangle,
so

ct ( cb ¼
qEw

mc2
; and hence prel ¼

IlEw

c2
: (13)

Now Ilw is the magnetic dipole moment of the loop; as vec-
tors, m points into the page, and p is to the right, so

prel ¼
1

c2
ðm% EÞ: (14)

This is the “hidden” momentum of Eq. (9).
The term “hidden momentum” was coined by Shockley;11

it was an unfortunate choice. The phenomenon itself was first
studied in the context of static electromagnetic systems with
nonzero field momentum (pfield ¼ !0

Ð
ðE% BÞ d3r). In such

configurations, the hidden momentum exactly cancels theFig. 2. A “Gilbert” magnetic dipole.

Fig. 3. Rectangular current loop in an external electric field.
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field momentum (ph ¼ (pfield), leaving a total of zero, as
required by the “center of energy theorem.”13 This has cre-
ated the impression that hidden momentum is something arti-
ficial and ad hoc—invented simply to rescue an abstract
theorem.14 Nothing could be further from the truth. Hidden
momentum is perfectly ordinary relativistic mechanical mo-
mentum, as the example above indicates; it occurs in systems
with internally moving parts, such as current-carrying loops,
and it is “hidden” only in the sense that it not associated with
motion of the object as a whole. A Gilbert dipole in an elec-
tric field, having no moving parts, harbors no hidden mo-
mentum (and the fields—with the crucial delta-function term
in B included—carry no compensating momentum).15

Returning to the configuration in Fig. 1, the hidden mo-
mentum in S0 is

ph ¼
1

c2
ðm0 x̂Þ % 1

4p!0

q

d2
ẑ

# $% &
¼ ( qm0

4p!0c2d2
ŷ :

(15)

Because ph is perpendicular to v and transverse components
are unaffected by Lorentz transformations, this is also the
hidden momentum in S. It is constant (in time), so there is
no associated force. But the hidden angular momentum,

Lh ¼ r% ph; (16)

is not constant (in the lab frame) because r is changing. In
fact,

dLh

dt
¼ v % ph ¼

qm0

4p!0

v
c2d2

x̂ : (17)

This increase in angular momentum requires a torque

N ¼ qm0

4p!0

v
c2d2

x̂ ; (18)

and this is precisely what we found in Eq. (5).
Recapitulating: In the Gilbert model, there is an extra term

in the torque formula [Eq. (8)]; the total torque is zero, there is
no hidden angular momentum, and nothing rotates. In the
Ampère model, there is no third term in the torque formula
[Eq. (5)];16 the torque is not zero and drives the increasing hid-
den angular momentum—but still nothing rotates.17 It helps to
separate the angular momentum into two types: “overt” (asso-
ciated with actual rotation) and “hidden” (so called because it
is not associated with any overt rotation of the object). Torque
is the rate of change of the total angular momentum,

N ¼ dLo

dt
þ dLh

dt
: (19)

In both models dLo=dt ¼ 0. In the Gilbert model N and
dLh=dt are also zero; in the Ampère model they are equal
but nonzero.

IV. MAGNETIZED MATERIALS

It is of interest to see how this resolution plays out in
Mansuripur’s formulation of the problem. He treats the dipole
as a magnetized medium and calculates the torque directly
from the Lorentz force law, without invoking p% E or
m% B. In the proper frame, he writes the magnetization as

M0ðx0; y0; z0; t0Þ ¼ m0 dðx0Þdðy0Þdðz0 ( dÞ x̂ : (20)

Now, M and the polarization P constitute an antisymmetric
second-rank tensor

Pl" ¼

0 cPx cPy cPz

(cPx 0 (Mz My

(cPy Mz 0 (Mx

(cPz (My Mx 0

0

BB@

1

CCA; (21)

whose transformation rule is18

Pz ¼ P0z; Px ¼ c P0x þ
v
c2

M0y

# $
;

Py ¼ c P0y (
v
c2

M0x

# $
; (22)

Mz ¼ M0z; Mx ¼ cðM0x ( vP0yÞ; My ¼ cðM0y þ vP0xÞ
(23)

(for motion in the z-direction). In the present case, then, the
magnetization and polarization in the “lab” frame are

Mðx; y; z; tÞ ¼ m0 dðxÞdðyÞdðz( vt( d=cÞx̂ ; (24)

Pðx; y; z; tÞ ¼ m0v
c2

dðxÞdðyÞdðz( vt( d=cÞŷ : (25)

According to the Lorentz law, the force density is

f ¼ qEþ J% B; (26)

where q ¼ ($ + P is the bound charge density and J ¼ @P=
@tþ $%M is the sum of the polarization current and the
bound current density. Using Eqs. (2), (3), (24) and (25), we
obtain

f ¼ (ð$ + PÞEþ ð$%MÞ % Bþ @P

@t
% B

¼ ( qm0v
4p!0c2

d

R3
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(where a prime denotes the derivative). The net force on the
dipole is

F ¼
ð

f dx dy dz ¼ qm0vd
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" #(((((
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Meanwhile, the torque density is

n¼ r% f ¼( qm0vd

4p!0c2

y

R2
dðxÞd0ðyÞdðz( vt(d=cÞ x̂ ; (29)

so the net torque on the dipole is
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ð
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¼ ( qm0vd
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(30)
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confirming Eq. (5). This is the torque required to account for
the increase in hidden angular momentum.

What if we run Mansuripur’s calculation for a dipole
made out of magnetic monopoles? The bound charge, bound
current, and magnetization current are19

q*b ¼ ($ +M; J*b ¼ (c2$% P; J*p ¼
@M

@t
; (31)

so the force density on the magnetic dipole [again invoking
Eqs. (2), (3), (24) and (25)] is20

f ¼ q*B( 1

c2
J* % E

¼ (ð$ +MÞBþ ð$% PÞ % E( 1

c2

@M

@t

# $
% E

¼ 0: (32)

The total force is again zero, but this time so too is the
torque density (n ¼ r% f) and hence the total torque. As
before, the torque is zero in the Gilbert model—and there is
no hidden angular momentum.

V. THE EINSTEIN-LAUB FORCE LAW

Having concluded that the Lorentz force law is unaccept-
able, Mansuripur proposes to replace Eq. (27) with an
expression based on the Einstein–Laub law,21

fEL ¼ ðP + $ÞEþ
@P

@t
% ðl0HÞ þ ðM + $Þl0H

( 1
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% E

¼ m0qvc
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1
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The total force on the dipole still vanishes,
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The torque density should be r% fEL,

nEL ¼ (
m0qvc
4p!0c2

z

R3
dðxÞdðyÞ½2dðz( vt( d=cÞ
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giving a total torque

NEL ¼ (
m0qvc
4p!0c2

x̂
2ðvtþ d=cÞ

d3
þ 1

c3

d
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ðz( vtÞ2
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¼ ( m0qv
4p!0c2d2

x̂ (36)

(the derivative is again evaluated at z( vt ¼ d=c). It’s not
zero! In fact, it’s minus the “Lorentz” torque given in Eq.
(30). But Mansuripur argues that, “To guarantee the conser-
vation of angular momentum, [Eq. (35)] must be sup-
plemented…” with extra terms,

n0EL ¼ nEL þ ðP% EÞ þ ðM% BÞ: (37)

In our case, the extra terms are

ðP% EÞ þ ðM% BÞ ¼ m0qv
4p!0c2d2

% dðxÞdðyÞdðz( vt( d=cÞ x̂ ;
(38)

and their contribution to the total torque is

ð
½ðP% EÞ þ ðM% BÞ' dx dy dz ¼ m0qv

4p!0c2d2
x̂ ; (39)

which is just right to cancel Eq. (36), yielding a net torque of
zero (which Mansuripur takes to be the correct answer).

What are we to make of this argument? In the first place,
the Einstein–Laub force density was derived assuming that
the medium is at rest,21 which in this case it is not. More im-
portant, the magnetization terms implicitly assume a Gilbert
model for the magnetic dipole,

ðM + $ÞB ¼ ($% ðM% BÞ þ ðB + $ÞM( ð$ +MÞB;

(40)

as long as the magnetization is localized, the first two terms
yield vanishing surface integrals,22 leaving (ð$ +MÞB(
ð1=c2Þ½ð@M=@tÞ % E' for the net force density on the object,
the same as in the Gilbert model [Eq. (32)].23 There may be
some contexts in which the Einstein–Laub force law is valid
and useful, but this is not one of them. Mansuripur is quite
explicit in writing that the magnetic dipole he has in mind is
“a small, charge neutral loop of current,” which is to say, an
Ampère dipole.

VI. CONCLUSION

The resolution of Mansuripur’s “paradox” depends on the
model for the magnetic dipole:

• If it is a Gilbert dipole (made from magnetic monopoles),
the third term in Namias’s formula [Eq. (8)] supplies the
missing torque. In Mansuripur’s formulation (using a
polarizable medium), it comes from a correct accounting
of the bound charge/current [Eq. (31)]. The net torque is
zero in the lab frame, just as it is in the proper frame.

• If it is an Ampère dipole (an electric current loop), the third
term in Namias’s equation is absent, and the torque on the
dipole is not zero. It is, however, just right to account for
the increasing hidden angular momentum in the dipole.

In either model, the Lorentz force law is entirely consist-
ent with special relativity.
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