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The nonrelativistic trajectory of a point charge q in the magnetic field of a steady line current I is
characterized by the three components of its initial velocity. The motion is periodic in the
cylindrical coordinates s, _/, and _z, describing, in the generic case, a kind of “double helix,” with
one helix serving as a guide while the other winds around it. A positive charge “drifts” in the
direction of the current (a negative charge goes the other way). The inclusion of a uniform line
charge k (coinciding with the current) does not alter the motion qualitatively, but it does change the
drift velocity, and can even reduce it to zero, collapsing the trajectory to the surface of a toroid.
The relativistic treatment modifies and illuminates these results. # 2022 Published under an exclusive
license by American Association of Physics Teachers.
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I. INTRODUCTION

In this paper, we study the motion of a charged particle in
the magnetic field of a long straight steady current. The
motion is (perhaps surprisingly) periodic in the radial cylin-
drical coordinate and also in the longitudinal and azimuthal
velocities.

In Sec. II, we obtain the nonrelativistic equations of
motion and their first integrals. In Sec. III, we examine three
special cases and adopt useful conventions for numerical
work. In Sec. IV, we endow the wire with a uniform static
charge (in addition to its current); this introduces an electric
force, but the main effect is to alter the drift velocity. In Sec.
V, we present a relativistic treatment, including both electric
and magnetic fields. Some of these results have appeared in
the recent literature, as indicated in the endnotes, but we
have endeavored to make our discussion self-contained.

II. EQUATIONS OF MOTION

The magnetic field of an infinite straight wire carrying a
steady current I, in cylindrical coordinates (s;/; z), with I
along the z axis, is

B ¼ l0

2p
I

s
/̂: (1)

The force on a charge q moving with velocity

v ¼ _s ŝ þ s _/ /̂ þ _z ẑ (2)

is

F ¼ qðv$ BÞ ¼ l0qI

2ps
ð _s ŝ þ s _/ /̂ þ _z ẑÞ $ /̂

¼ l0qI

2ps
ð _s ẑ & _z ŝÞ ¼ ma:

(3)

The acceleration (in cylindrical coordinates) is

a ¼ ð€s & s _/
2Þ ŝ þ ðs€/ þ 2 _s _/Þ /̂ þ €z ẑ; (4)

so the equations of motion are

1½ (€s& s _/
2 ¼&a

_z

s
; 2½ ( s€/þ 2 _s _/ ¼ 0; 3½ (€z ¼ a

_s

s
; (5)

where

a ) l0qI

2pm
(6)

is a constant characterizing the strength of the force.
Question: What is the trajectory of the particle?1–6

Multiplying Eq. (5-[2]) by s, we get

s2 €/ þ 2s _s _/ ¼ d

dt
ðs2 _/Þ ¼ 0 ) s2 _/ ¼ ‘

m
(7)

is a constant of the motion (physically, ‘ is the z component
of the angular momentum). Meanwhile, Eq. (5-[3]) indicates

d

dt
ð _zÞ ¼ d

dt
ða ln sÞ ) _z ¼ a ln ðs=s0Þ; (8)

where s0 is a second constant of the motion—not to be con-
fused with s(0) (physically, s0 is related to the momentum
conjugate to z). Instead of using Eq. (5-[1]) to get _s, it is a lit-
tle quicker to exploit the fact that magnetic forces do no
work, so the kinetic energy is conserved:

E ¼ 1

2
mv2 ¼ 1

2
mð _s2 þ s2 _/

2 þ _z2Þ; (9)

or

E ¼ 1

2
m _s2 þ ‘2

2ms2
þ 1

2
ma2 ln ðs=s0Þ½ (2: (10)

Serendipitously, this is nothing but the equation of motion
for a mass m in the one-dimensional potential

VðsÞ ¼ ‘2

2ms2
þ 1

2
ma2 ln ðs=s0Þ½ (2: (11)
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This potential is plotted in Fig. 1. The equilibrium radius
se is given by dV=ds ¼ 0:

‘

mase

! "2

¼ ln
se

s0

! "
: (12)

Provided that

E > VðseÞ ¼
‘2

2ms2
e

1þ ‘

mase

! "2
" #

; (13)

the particle slides back and forth, periodically, between the
turning points smin and smax. But if s(t) is periodic, so too are
_/ (Eq. (7)) and _z (Eq. (8)). This means that /ðtÞ and z(t)
both take the “quasiperiodic” form7

j tþ f ðtÞ; (14)

where j is a constant and f(t) is periodic (f ðtþ TÞ ¼ f ðtÞ,
with T the period of s(t)). Except for a constant azimuthal
velocity and a constant longitudinal drift, all three coordi-
nates oscillate (at the same frequency). The entire motion is
a kind of wobbling deformed helix, or “helicoid.”3

III. SPECIAL CASES AND NUMERICAL SOLUTIONS

A. The Helix

If the amplitude of the radial oscillations is zero, then it is
a true helix ( _/ and _z are constants):8

sðtÞ ¼ se; _/ðtÞ ¼ ‘

ms2
e

; _zðtÞ ¼ ‘2

am2s2
e

; (15)

(see Fig. 2).

B. Small amplitudes

The second derivative at the equilibrium point (the “spring
constant” for small oscillations) is

k ) d2V

ds2

####
se

¼ ma2

s2
e

þ 2‘2

ms4
e

; (16)

so the (angular) frequency for small amplitudes is

x ¼
ffiffiffiffi
k

m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

s2
e

þ 2‘2

m2s4
e

s

¼ a
se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 ln ðse=s0Þ

p
: (17)

The trajectory is a kind of double helix, with a small coil
winding around the larger helix of Sec. III A (see Fig. 3).

C. Zero angular momentum

If ‘ ¼ 0; _/ ¼ 0, and the motion is confined to a plane con-
taining the z axis, the equilibrium radius is se ¼ s0 ((Eq.
(12)), and the frequency for small oscillations is x ¼ a=s0

((Eq. (17)).6 The trajectories are cycloid-like (see Fig. 4).

D. Numerical solutions

The general solution depends on the parameter a ((Eq.
(6)), with the dimensions of speed. For numerical work, we
might as well set9

a ) 1; (18)

this just defines a convenient unit for velocity. We will also
set m¼ 1, establishing the unit of mass. Six initial conditions
determine the trajectory:

(1) s(0) (the initial radial position); we can use this as the
unit of length, so

sð0Þ ) 1 (19)

(the unit of time, then, is sð0Þ=a).
(2) /ð0Þ (the initial azimuthal angle); we might as well set

this to zero

Fig. 1. The potential in Eq. (11).

Fig. 2. The helix, case A.
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/ð0Þ ) 0 (20)

(this just establishes the orientation of the axes).
(3) z(0) (the initial value of z); again, we might as well set

this to zero

zð0Þ ) 0 (21)

(that just picks the position of the origin along the z
axis).

(4) _sð0Þ (the initial radial velocity):

_sð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E& ‘2 & ðln s0Þ2

q
: (22)

(5) _/ð0Þ (the initial angular velocity):

_/ð0Þ ¼ ‘: (23)

(6) _zð0Þ (the initial longitudinal velocity):

_zð0Þ ¼ &ln s0: (24)

Thus, each trajectory is characterized by three numbers,
which we can take to be E, ‘, and s0 (or, if you prefer, _sð0Þ;
_/ð0Þ, and _zð0Þ). In Figs. 2–4, we illustrate each of the trajec-
tories discussed.10,11

E. Period and drift velocity

For a given trajectory, the radius is localized (smin * s
* smax), but the z coordinate goes from &1 to 1. The
period of the oscillations is

T ¼
ðT

0

dt ¼ 2

ðsmax

smin

ds

_s

¼ 2

ðsmax

smin

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2E=mÞ & ð‘=msÞ2 & a ln ðs=s0Þ½ (2

q : (25)

The longitudinal drift velocity (the average value of _z) is

vd ¼
Dz

T
; (26)

where

Dz ¼ 2 zðsmaxÞ & zðsminÞ½ ( (27)

is the change in z during one full cycle:12

vd ¼
2

T

ðsmax

smin

dz

ds
ds¼ 2

T

ðsmax

smin

_z

_s
ds

¼ 2a
T

ðsmax

smin

lnðs=s0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2E=mÞ& ð‘=msÞ2& a lnðs=s0Þ½ (2

q ds: (28)

The drift velocity is in the direction of the current if the
charge is positive. (If it is negative, vd is the opposite to I.)
Here is the proof.5

Proof: Rewriting Dz (Eq. (27)), we get

Dz ¼
ðT

0

_z dt: (29)

From Eqs. (5) and (7),

a _z ¼ &sð€s & s _/
2Þ ¼ s2 _/

2 & s€s

¼ ‘

ms

! "2

& d

dt
ðs _sÞ þ _s2; (30)

so

Dz ¼ 1

a

ðT

0

_s2 þ ‘

ms

! "2
" #

dt& 1

a
s _s

####
T

0

: (31)

But the last term is zero, since s(t) is periodic, and the
remaining integral is positive definite (except for the trivial
case of a particle at rest or with no charge), so Dz shares the
sign of a (positive if qI> 0, minus if qI< 0).

IV. ADDING AN ELECTRIC FIELD

Suppose the wire carries a uniform line charge k in addi-
tion to the steady current I. There is now a static electric
field

E ¼ 1

2p!0

k
s

ŝ; (32)

as well as the magnetic field (Eq. (1)), and the net force isFig. 3. The “double helix,” case B.

Fig. 4. The quasi-cycloid, case C.
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F ¼ qðEþ v$ BÞ;

¼ qk
2p!0s

ŝ þ l0qI

2ps
ð _s ŝ þ s _/ /̂ þ _z ẑÞ $ /̂;

¼ l0qI

2ps
_s ẑ þ kc2

I
& _z

! "
ŝ

& '
¼ ma; (33)

where c ¼ 1=
ffiffiffiffiffiffiffiffiffi
!0l0
p

is the speed of light. The first equation
of motion is now

10½ ( €s & s _/
2 ¼ &a

ð _z & gcÞ
s

; (34)

where

g ) kc

I
: (35)

The other two are unchanged (Eq. (5)), and hence so too are
the first integrals (7) and (8):

s2 _/ ¼ ‘

m
and _z ¼ a ln ðs=s0Þ: (36)

However, for future convenience, we write the latter as

_z ¼ a ln ðs=~s0Þ þ cg; (37)

where ~s0 ) s0ecg=a.
Conservation of energy now includes the electric potential

energy:13

E ¼ 1

2
mv2 & qk

2p!0
ln ðs=~s0Þ

¼ 1

2
mð _s2 þ s2 _/

2 þ _z2Þ & mcag ln ðs=~s0Þ;
(38)

or, introducing a new energy ~E by subtracting off the irrele-
vant constant,

~E ) E& 1

2
mc2g2

¼ 1

2
m _s2 þ ‘2

2ms2
þ 1

2
ma2 ln ðs=~s0Þ½ (2:

(39)

The radial motion is that of a particle of energy ~E in a one-
dimensional potential well

VðsÞ ¼ ‘2

2ms2
þ 1

2
ma2 ln ðs=~s0Þ½ (2; (40)

the same form as we had without the electric field (compare
Eq. (11))!

This implies that there is a mapping between solutions to
the original problem and solutions of the generalized system.
Say that without the electric field, we have a solution

fsmðtÞ;/mðtÞ; zmðtÞg: (41)

From this, we can construct a solution with the electric field

fsemðtÞ;/emðtÞ; zemðtÞg (42)

(with s0 ! ~s0 and E! ~E), such that

semðtÞ ¼ smðtÞ; /emðtÞ ¼ /mðtÞ;

zemðtÞ ¼ zmðtÞ þ cgt; (43)

(Eq. (37)). For example, in case A (the helix), if the charge
density is

k ¼ & 2p!0

qms2
e

‘2; (44)

then (Eq. (15))

_zem ¼ _zm þ cg ¼ 0; (45)

and the helix collapses to a circle (Fig. 5); the magnetic force

disappears entirely, and the orbital speed ðv ¼ se
_/) satisfies

& qk
2p!0se

¼ mv2

se
; (46)

as it should (the electric attraction supplying the centripetal
force). In the generic case, we can “stop the drift”—produc-
ing a localized “donut” trajectory (Fig. 6)—by subtracting vd

from vzð0Þ and introducing an electric field (Eq. (32)) with

k
2p!0

¼ & am

q
vd: (47)

If all this comes as a surprise, remember that in relativity, a
current in longitudinal motion acquires an electric charge.14

Conversely, introducing k amounts to adopting a moving ref-
erence frame. We will explore this further in Sec. V.

V. RELATIVISTIC TREATMENT

Thus far, we have treated the motion nonrelativistically.
In this section, we consider the fully relativistic case, and—
for a change—we will use a Lagrangian approach. The rela-
tivistic Lagrangian for a point charge in electromagnetic
fields specified by the potentials V and A is15

L ¼ &mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& v2=c2

p
& qðV & v + AÞ: (48)

In our case

V ¼ & k
2p!0

ln ðs=aÞ; A ¼ &l0I

2p
ln ðs=aÞ ẑ; (49)

where a is an arbitrary reference point (which we might as
well take to be the same for V and A). Thus,

L ¼ &mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 1

c2
_s2 þ s2 _/

2 þ _z2

( )r

þ qk
2p!0

ln ðs=aÞ & ql0I

2p
_z ln ðs=aÞ: (50)

Since / and z are ignorable coordinates, the associated
canonical momenta are constants of the motion:

p/ )
@L

@ _/
¼ cms2 _/; (51)

pz )
@L

@ _z
¼ cm _z & ql0I

2p
ln ðs=aÞ; (52)
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where

c ) 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& v2=c2

p : (53)

In addition, we have the conserved total energy16

E ¼ cmc2 & qk
2p!0

ln ðs=aÞ: (54)

From Eq. (54), we solve for c:

c ¼ 1

mc2
ðEþ agmc ln ðs=aÞÞ; (55)

where (as before)

a ) l0qI

2pm
; g ) kc

I
: (56)

Expressing _/ and _z in terms of s (and the conserved
quantities):

_/ ¼ c2p/

s2ðEþ agmc ln ðs=aÞÞ
; (57)

_z ¼ c2ðpz þ am ln ðs=aÞÞ
ðEþ agmc ln ðs=aÞÞ

: (58)

As for _s, Eq. (55) indicates

1

c2
¼ 1& v2

c2
¼ 1& 1

c2
ð _s2 þ s2 _/

2 þ _z2Þ

¼ m2c4

ðEþ agmc ln ðs=aÞÞ2
; (59)

so substituting in Eqs. (57) and (58),

_s2 ¼ c2 & c4 ðmcÞ2 þ ðp/=sÞ2 þ ðpz þ am ln ðs=aÞÞ2

ðEþ agmc ln ðs=aÞÞ2
: (60)

This can be written in a more suggestive way

1

2
mc2 ¼ 1

2
m _s2 þ VeffðsÞ; (61)

where

Veff )
1

2
mc4

ðmcÞ2 þ ðp/=sÞ2 þ ðpz þ am ln ðs=aÞÞ2
h i

ðEþ a g mc ln ðs=aÞÞ2
:

(62)

Equation (61) can be read as a (non-relativistic!) one-
dimensional problem in which a particle of total energy
1=2mc2 rocks back and forth in the potential well Veff .

In particular, if g ¼ 0 (the purely magnetic case), then

Veff ¼
mc4

2E2
ðmcÞ2 þ ðp/=sÞ2 þ ðpz þ am ln ðs=aÞÞ2
h i

¼ Aþ B

s2
þ C ln ðs=s1Þ½ (2; (63)

which (except for the irrelevant constant A) has the same
form as Eq. (11); again s(t) is periodic, and so too are _/ and
_z. Qualitatively, the trajectories are the same as in the nonrel-
ativistic case. The situation is more complicated, when g is
nonzero (i.e., with the electric field included), for now
VeffðsÞ does not go to infinity as s! 0 and s!1. Instead,
if p/ 6¼ 0

Veff !
1; as s! 0;

1

g2

1

2
mc2

! "
; as s!1;

8
><

>:
(64)

whereas if p/ ¼ 0

Veff !
1

g2

1

2
mc2

! "
(65)

in both directions. Moreover, Veff has an infinite spike at

ssp ¼ ae&E=agmc; (66)

where the denominator vanishes. In terms of ssp,

Fig. 5. The helix (Fig. 2) collapses to a circle.

Fig. 6. The double helix shrinks to a donut.
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c ¼ ag
c

ln ðs=sspÞ; (67)

and since for physically possible motion c > 1, it follows
that

if ag > 0; then s > ssp; (68)

if ag < 0; then s < ssp: (69)

In the first case kq > 0, the electrical force is repulsive, and
the motion is unbounded; in the second case kq < 0, the
electrical force is attractive, and the motion is bounded (in
s). Typical plots are shown in Fig. 7.

An illuminating way to think about these results is to
imagine starting with a combination (k; I), and performing a
Lorentz boost along the z direction. Because

Jl ¼ ðcq; JÞ ¼ ck
A
;

I

A

! "
; (70)

(where A is the cross-sectional area of the “wire”) constitutes
a four-vector, ðcqÞ2 & J2, and hence ðckÞ2 & I2 is Lorentz
invariant. It could be time-like (or shall we call it “charge-
like”?), or spacelike (“current-like”), and in the former case
“forward” (k > 0) or “backward”:17

(i) charge-like, forward ðckÞ2 & I2 > 0, k > 0,
(ii) charge-like, backward ðckÞ2 & I2 > 0, k < 0,
(iii) current-like, ðckÞ2 & I2 < 0.

By suitable Lorentz boost a forward charge-like configura-
tion can be transformed to any other forward charge-like
configuration ðk0; I0Þ with ðckÞ02 & I02 ¼ ðckÞ2 & I2, a back-
ward charge-like configuration can be transformed into any
other backward charge-like configuration with ðckÞ02 &I02

¼ ðckÞ2 & I2, and with a boost plus a rotation a current-like
configuration can be transformed into any other current-like
configuration with ðckÞ02 & I02 ¼ ðckÞ2 & I2. Therefore, there

are really just three distinct r"egimes here, and if we can find
the trajectories for the “seed” configurations:

(i) I ¼ 0, kq > 0,
(ii) I ¼ 0, kq < 0,
(iii) k ¼ 0, I 6¼ 0,

we can construct the trajectory for any ðk; IÞ by Lorentz
transformation. These are the r"egimes illustrated in Fig. 7: (i)
runaway repulsion to s ¼1, (ii) attraction to the axis, and
(iii) quasi-oscillatory motion with bounded s.
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15J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons,
New York, 1999), Eq. (12.12).

16Jackson (Ref. 15), Eq. (12.17).
17The “light-like” case (ðckÞ2 & I2 ¼ 0) is qualitatively similar, with the

exception of the trivial limit k ¼ 0, I ¼ 0, for which the trajectory is of
course a straight line, with constant velocity.
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