
Is Current a Vector?

So many people have written to me complaining about my treatment of
current as a vector that I have decided to write out my explanation once and
for all. Some of what follows may not be relevant to your personal concern, but
I hope I have addressed the most common objections. Let me say at the outset
that if it bothers you to think of current as a vector, by all means stick with the
scalar notation! This is purely a matter of convenience, and most people think
it is simpler to do it that way. But for consistency with more advanced work it
is (in my opinion) preferable to switch over at some stage to the more general
notation.

Let me begin with an analogy: A locomotive on a curving track. Suppose I
want to tell someone how fast it is going. Should I specify its velocity (magnitude
and direction), or just its speed (the magnitude)? Obviously it would be simplest
to quote the speed—after all, the direction of the motion is dictated by the shape
of the track, and it seems awkward and unnecessary to say “60 mph due east,”
and a moment later “60 mph at 37◦ west of north,” and so on—why not just
say the train is going 60 mph? In this context it is simpler to use the scalar
quantity. But if you are a physics teacher, you know that in the next chapter
you will be discussing projectile motion (say), in which the object in question
moves in two dimensions, and its direction is not constrained by the shape of
any track. In this context you might prefer to talk about the velocity. Is the
rate of change of position a scalar, or a vector? I guess it depends on the context
which is the more natural terminology.

In the case of current exactly the same issue arises: If you are talking about
current constrained to flow along a wire (the analog to the track), then no doubt
it is simpler to treat it as a scalar quantity. But when it comes to surface currents
(charge flowing over a 2-dimensional surface) or volume currents (charge flowing
through 3-dimensional space), then you have to keep track of the directions, and
so we adopt the vector notation (K and J, respectively). Looking back, one asks
how come we didn’t use a vector for the 1-dimensional case (I). Perhaps, for
consistency, we should have!

It is a peculiar fact that in almost all formulas (Biot-Savart, Lorentz, etc.)
current appears multiplied by an element of displacement along the wire: I dl.
Because the current (I) and the displacement (dl) are in the same direction, it
doesn’t matter whether you associate the vector sign with the one or the other—
in elementary work everyone attaches it to dl, keeping I a scalar. But again,
when you come to surface and volume currents, where the analogous expression
is K da and J dτ , you have no choice: here the direction is that of the current
(dτ doesn’t even have a direction). So if you write I dl for the one-dimensional
current, everything is consistent, even though in that case you can do it either
way.

Here’s another consideration: If you have charges of one sign, with charge
density ρ, flowing with velocity v (in 3-dimensions), this constitutes a volume
current density

J = ρv.
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If you have a surface charge σ flowing over a surface with velocity v, the surface
current is

K = σv.

What about a line charge λ, flowing down a wire at velocity v? I would like to
write the analogous expression

I = λv.

But if you forbid me to treat current as a vector I have to adopt a different
notation for the one-dimensional case. Doesn’t that seem awkward?

OK: I have told you why I prefer (in appropriate cases) to represent current
as a vector. Let me now address the standard objections to this:

• In high school I was told that current is a scalar. Sure—so was I.
And that is entirely appropriate at that level, where surface and volume
currents do not occur. It’s not wrong, exactly, just limiting. At the college
level it is time to liberate yourself from the more constraining notation.

• Charge is a scalar, and time is a scalar, so I = dq/dt must be
a scalar. To put it another way, the current in a wire is the amount of
charge per unit time passing a particular point—there is no reference here
to direction. Well, actually there is: if positive charge is passing to the
right we say the current is positive (say), and if it is going to the left we
say the current is negative. Of course, in a wire those are the only two
possibilities, so a simple sign suffices to keep track of it. But in general we
are talking about charge per unit time flowing in a particular direction—
it’s just that the direction (up to a sign) is dictated by the shape of the
wire. Again, one could run the same argument with the locomotive on
the track: distance (traveled) is a scalar, and time is a scalar, so velocity
must be a scalar(?)! No: it is not distance we meant, but distance in a
particular direction, which is to say displacement.

• Currents do not add vectorially. This is the most subtle objection,
because it misconstrues the meaning of vector addition. Kirchhoff’s law
says that the sum of the currents into a junction is zero (counting currents
flowing out as negative). They do not add vectorially—it doesn’t matter
what direction the wires meet at. Correct, but this is a law of physics,
not a mathematical case of addition of vectors/scalars. If I say the sum of
the momenta of some colliding particles is the same after the collision as
before, that is (again) a law of physics, not a question of vector addition
(though in this case the law says you should add them vectorially). Kirch-
hoff’s law has nothing to do with the vectorial nature of current, since
it refers to the magnitudes. The number of locomotives entering a junc-
tion is equal to the number leaving (in any given time interval)—scalar
addition—but this tells me noting about the vectorial nature of velocity,
only about the law of conservation of locomotives.

In point of fact, currents do add vectorially. Here’s an example. Suppose
I have a fat pipe, and inside that pipe there are some wires, each carrying
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a current. The wires do not run parallel to the axis of the pipe, but make
various angles. When they reach the edge of the pipe, they bend back so
as to make the same angle (like light rays reflecting off the surface of a
light pipe). If you ask “What is the total current flowing down the pipe?”
you would of course have to take into account the direction of each wire.
If it happens to run parallel to the pipe, it counts at full value, but if
it’s going at 45 ◦ you’ll need to throw in a factor of 1/

√
2 (and if it is

perpendicular to the pipe it contributes nothing). In other words, you
must add the currents vectorially—the total current is the vector sum of
the individual currents.

I hope this helps. But again: if you prefer to think of current as a scalar,
that’s fine. It won’t hurt you; it just isn’t very elegant.

David Griffiths
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